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The iterative conception of set
V0 = /0;
Vα+1 = P(Vα);
Vγ =

∪
α<γ Vα , where γ is a limit;
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ZF

A natural theory for V is the Zermelo-Fraenkel set theory (ZF).

The axims of Zermelo set theory (Z) include Extensionality, Foundation,
Pairing, Union, Powerset, Infinity, and Separation.

ZF is Z plus the Axiom of Replacement.

(Replacement) ∀x ∈ w∃!yφ(x,y,u)→∃v∀x ∈ w∃y ∈ v φ(x,y,u).

ZFC is ZF + the Axiom of Choice (i.e., every set is well-ordered).
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Urelements

Urelements are members of sets that are not themselves sets.

Let A be a set of urelements.
V0(A) = A;
Vα+1(A) = P(Vα(A))∪Vα(A);
Vγ(A) =

∪
α<γ Vα(A), where γ is a limit;

V(A) =∪
α∈Ord Vα(A).

Let A be the class of urelements (not necessarily a set). Then we have
the whole universe U as

U =
∪

A⊆A

V(A).
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The universe with urelements

U

V

A
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Why urelements?

With urelements, many questions arise.

What is a natural theory for U?

How do standard set-theoretic constructions such as forcing behave in
urelement set theory?

...

They are philosophically interesting.

Set theory with urelements is a more general ontological framework;

different philosophical conceptions of set and the nature of many
set-theoretic axiom can be better understood with urelements.
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ZFUR

Definition
The language of urelement set theory contains A as a unary predicate for
urelements. ZU is Z modified to allow a proper class of urelements plus
∀x(A (x)→∀y(y /∈ x)).

Definition
ZFUR = ZU + Replacement.
ZFCUR = ZFUR + AC.
ZF = ZFUR + ∀x¬A (x).
ZFC = ZF + AC.

Note. The subscript R means stronger axioms are not included. It is
folklore that ZFCUR cannot prove the Collection Principle

(Collection)∀x ∈ w∃yφ(x,y,u)→∃v∀x ∈ w∃y ∈ v φ(x,y,u).
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Interpreting U in V

Definition (Barwise?)
Let V be a model of ZF and X be a class of V. In V, define by recursion

VJXK = ({0}×X)∪{x̄ ∈ V : ∃x(x̄ = ⟨1,x⟩∧ x ⊆ VJXK)}.
For every x̄, ȳ ∈ VJXK,

x̄ ∈̄ ȳ iff ∃y(ȳ = ⟨1,y⟩∧ x̄ ∈ y);
Ā (x̄) iff x̄ ∈ {0}×X.

Theorem
Let V be a model of ZF and X be a class of V. Then

VJXK |= ZFUR + Collection;
VJXK |= AC iff V |= AC.
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Interpreting U in V

Corollary.
The following theories are mutually interpretable.

ZF.
ZFCUR + Collection + A ∼ ω.
ZFCUR + Collection + A ∼ ω1.
ZFCUR + Collection + “for every cardinal κ, there is a set of κ-many
urelements”.

Proof.
VJω1K has ω1-many urelements, and VJOrdK has unboundedly many.
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A Hierarchy of Axioms
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Reflection

Reflection principles in set theory assert that the set-theoretic universe is
indescribable.

(RP) For every set x there is a transitive set t extending x such that
for every v1, ...,vn ∈ t, φ(v1, ...,vn)↔ φt(v1, ...,vn).

Partial reflection: any true statement is true in some transitive set
containing the parameters.

(RP−) If φ(x1, ...,xn), then there is a transitive set t containing
x1, ...xn such that φt(x1, ...,xn).

First-order reflection is often seen as a consequence of the iterative
conception of set.
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Dependent choice
For every infinite cardinal κ, the DCκ -scheme is a class version of the
axiom DCκ .

(DCκ -scheme) If for every x there is some y such that φ(x,y,u), then
there is a κ-sequence f such that φ(f↾α, f(α),u) for every α < κ.

DCOrd holds if the DCκ -scheme holds for every κ.

Fact
ZU + RP ⊢ Collection;
ZFUR + A is a set ⊢ RP;
ZFCUR + A is a set ⊢ DCOrd.

Theorem (Schlutzenberg)
ZFCUR + Collection ⊢ DCω -Scheme.
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Urelement axioms

Definition
A set x is realized if there is a set of urelements equinumerous with x.
For any sets of urelements A,B ⊆ A , B is a tail of A, if B is disjoint from
A and every C ⊆ A disjoint from A injects into B.

A B

C
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Urelement axioms

(Plenitude) Every cardinal is realized.

(Closure) The supremum of a set of realized cardinals is realized.

(Duplication) Every set of urelements has a duplicate.

(Tail) Every set of urelements has a tail.
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The hierarchy in ZFCUR
Theorem
Over ZFCUR, the following implication diagram holds and is complete.

DCω -scheme

Tail

Plenitude

DCOrd

DCκ -scheme

Closure

RP

Closure∧Duplication

Collection RP−

...

Duplication

..

.

DCω1-scheme

A is a set
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Small-kernel model

Definition
ker(x) is the set of urelements in the transitive closure of {x}.

Definition
Let I be an ideal of A containing every urelement singleton.

UI = {x ∈ U : ker(x) ∈ I }.

......

UI

...

17 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

Small-kernel model

Definition
ker(x) is the set of urelements in the transitive closure of {x}.

Definition
Let I be an ideal of A containing every urelement singleton.

UI = {x ∈ U : ker(x) ∈ I }.

......

UI

...

17 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

Small-kernel model

Definition
ker(x) is the set of urelements in the transitive closure of {x}.

Definition
Let I be an ideal of A containing every urelement singleton.

UI = {x ∈ U : ker(x) ∈ I }.

......

UI

...

17 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

Small-kernel model

Definition
ker(x) is the set of urelements in the transitive closure of {x}.

Definition
Let I be an ideal of A containing every urelement singleton.

UI = {x ∈ U : ker(x) ∈ I }.

......

UI

...

17 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

Small-kernel models

Theorem
UI |= ZFUR + A is a proper class;
UI |= AC if U |= AC.

Examples.

Finite-kernel model. Let U be a model of ZFCUR + A ∼ ω and I be
the finite ideal. In UI , A is a proper class but every set of A is finite;
hence the DCω -scheme fails.

Countable-kernel model. Let U be a model of ZFCUR + A ∼ ω1 and I
be the countable ideal. In UI , A is a proper class but every set of A is
countable, so the DCω1-scheme fails. But UI |= Collection because UI |=
Tail.
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The hierarchy in ZFUR

Without AC, different formulations of Plenitude and Tail come apart.

(Plenitude) Every well-ordered cardinal is realized.

(Plenitude+) Every set x is realized.

(Tail) Every set of urelements has a tail.

(Tail∗) For every set of urelements, there is a greatest cardinal κ such
that κ-many urelements are disjoint from it.

(Tail+) Every set of urelements has a well-ordered tail.

19 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

The hierarchy in ZFUR

Without AC, different formulations of Plenitude and Tail come apart.

(Plenitude) Every well-ordered cardinal is realized.

(Plenitude+) Every set x is realized.

(Tail) Every set of urelements has a tail.

(Tail∗) For every set of urelements, there is a greatest cardinal κ such
that κ-many urelements are disjoint from it.

(Tail+) Every set of urelements has a well-ordered tail.

19 / 46



Preliminaries A Hierarchy of Axioms Forcing with Urelements

The hierarchy in ZFUR
Theorem
Over ZFUR,

Plenitude+ → Duplication;
Plenitude ↛ (Duplication ∨ Collection);
(Plenitude ∧ Duplication) ↛ Collection;
Tail+ → RP;
Tail∗ ↛ (Collection ∨ Tail).

RP

Plenitude
Plenitude+

RP−

Closure∧Duplication

CollectionDuplicationClosure

A is a set Tail+

Tail Tail∗
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Open Questions
ZFUR + Plenitude+ ⊢ Collection?
ZFUR + Tail ⊢ Collection?
ZFUR + Collection ⊢ RP−?
ZFUR + RP− ⊢ RP?
ZFUR + RP− ⊢ Collection?
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Philosophical remarks

It seems that ZFUR is an inadequate urelement set theory, not robust
for describing U.

However, models of ZFUR seem to satisfy the iterative conception of
set, i.e., ∀x x ∈ V(ker(x)).

With urelements, the iterative conception of set is weaker than the
reflective conception.

With AC, ZFUR + Collection seems to be a robust theory (more on
this later).
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Forcing with Urelements
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Forcing in ZF

V
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Forcing in ZF

V V[G]
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Forcing in ZF

In ZF, given a forcing poset P. VP is the class of P-names consisting sets
of pairs ⟨ẋ,p⟩, where ẋ ∈ VP and p ∈ P.

For each formula φ, we can define the forcing relation p ⊩ φ(ẋ1, ..., ẋn).

Given a countable transitive model M of ZF and P ∈ M, every M-generic
filter G over P produces a generic extension M[G] = {ẋG : ẋ ∈ MP}, where
ẋG = {ẏG : ∃p(⟨ẏ,p⟩ ∈ ẋ∧p ∈ G)}.

M ⊆ M[G]: every x ∈ M has a canonical name x̌ = {⟨y̌,1P⟩ : y ∈ x}. In
particular, /0 is its own name.

The Forcing Theorem: whatever is true in M[G] is forced by some p ∈ G,
and vice versa.
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Forcing with urelements
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

An existing approach

Blass and Ščedrov adopted the following approach, treating each
urelement as a different copy of /0.
Definition
Let P be a forcing poset. ẋ ∈ UP

#
iff either ẋ is an urelement, or ẋ is a set

of ordered-pairs ⟨ẏ,p⟩, where ẏ ∈ UP
#
. For every p ∈ P and ẋ, ẏ ∈ UP,

p ⊩# ẋ = ẏ iff (ẋ and ẏ are the same urelement) ∨ (p ⊩# ẋ ⊆ ẏ∧ ẏ ⊆ ẋ);
p ⊩# A (ẋ) iff ẋ is an urelement.

If M is a countable transitive model of ZFUR and G is an M-generic filter
over P, then for every ẋ ∈ MP

#

ẋG =

{
ẋ if A (x)
{ẏG : ∃p ∈ G⟨ẏ,p⟩ ∈ ẋ} otherwise

M[G]# = {ẋG : ẋ ∈ MP
#
}.
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#
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ẋ if A (x)
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

A problem with ⊩#

Definition
A forcing relation ⊩ is full iff whenever p ⊩ ∃y φ(y, ẋ1, ..., ẋn),
p ⊩ φ(ẏ, ẋ1, ..., ẋn) for some P-name ẏ.

Fullness has various applications, and ZFC proves that every forcing
relation is full.

Observation
⊩# is almost never full.

Proof.
Suppose that P has a a maximal antichain ⟨pi : i ∈ I⟩ and ⟨ai : i ∈ I⟩ are
some distinct urelements. Let ẋ = {⟨ai,pi⟩ : i ∈ I}. Then 1P ⊩# ∃y (y ∈ ẋ).
But no name can witness this as names of urelements cannot be
mixed.
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

A new approach

Definition (Wu, Y.)

Let P be a forcing poset. ẋ ∈ UP iff
ẋ is a set of ordered-pairs ⟨y,p⟩ where y ∈ UP or y is an urelement; and
whenever ⟨a,p⟩,⟨y,q⟩ ∈ ẋ, where a is an urelement and a ̸= y, then p
and q are incompatible.

No urelement is a P-name.
When ⟨a,p⟩ ∈ ẋ, then p is the “degree” to which a is identical to ẋ.
The incompatibility condition ensures that when ẋ is collapsed to an
urelement nothing bad happens.
As a result, we can mix different names.
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The incompatibility condition ensures that when ẋ is collapsed to an
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ẋ is a set of ordered-pairs ⟨y,p⟩ where y ∈ UP or y is an urelement; and
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When ⟨a,p⟩ ∈ ẋ, then p is the “degree” to which a is identical to ẋ.
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ẋ is a set of ordered-pairs ⟨y,p⟩ where y ∈ UP or y is an urelement; and
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The incompatibility condition ensures that when ẋ is collapsed to an
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

A new approach

Definition
Let P be a forcing poset, p ∈ P, and x1, ...,xn ∈ UP.

p ⊩ A (ẋ1) iff {q ∈ P : ∃⟨a, r⟩ ∈ ẋ1 (A (a)∧q ≤ r)} is dense below p.
p ⊩ ẋ1

A
= ẋ2 iff

{q ∈ P : ∃a, r1, r2(A (a)∧⟨a, r1⟩ ∈ ẋ1 ∧⟨a, r2⟩ ∈ ẋ2 ∧q ≤ r1, r2)}∪{q ∈
P : ∀⟨a1, r1⟩ ∈ ẋ1 (A (a1)→ q⊥r1)∧∀⟨a2, r2⟩ ∈ ẋ2 (A (a2)→ q⊥r2)}
is dense below p.
p ⊩ ẋ1 = ẋ2 iff p ⊩ ẋ1 ⊆ ẋ2 ∧ ẋ2 ⊆ ẋ1 ∧ ẋ1

A
= ẋ2.
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Fullness of ⊩

Theorem
The following are equivalent over ZFCUR.

Collection.
For every P, its forcing relation ⊩ is full.

Note. Another reason to think that ZFCUR + Collection is a natural
theory.
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Generic extensions
Definition
Let M be a ctm of ZFUR, P ∈ M and G be an M-generic filter over P. For
every ẋ ∈ MP,

ẋG = a if A (a) and ⟨a,p⟩ ∈ ẋ for some p ∈ G;
ẋG = {ẏG : ⟨ẏ,p⟩ ∈ ẋ for some ẏ ∈ MP and p ∈ G} otherwise.

M[G] = {ẋG : ẋ ∈ MP}.

Fact
M ⊆ M[G]. G ∈ M[G]. A M = A M[G]. M[G] = M[G]#.

The Forcing Theorem
(p ⊩ φ(ẋ1, ..., ẋn))M iff for every G containing p, M[G] |= φ(ẋ1G , ..., ẋnG).
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Preliminaries A Hierarchy of Axioms Forcing with Urelements

Axiom preservation

Theorem
Forcing over ZFUR preserves ZFUR, Collection, AC, Plenitude(+), Tail,
Duplication, DC<Ord, RP−, and RP. Forcing over ZFCUR preserves
Closure.

Note. The usual proofs that forcing preserves Replacement in ZF use
Collection in the ground model, which cannot work here.

Theorem
κ+-closed forcing notions preserve the DCκ -scheme over ZFCUR.
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Ground model definability

Theorem (Laver, Woodin, independently)
Every transitive model of ZFC is definable in all of its generic extensions
with parameters.

Laver’s argument (also attributed to Hamkins) can be easily generalized to
show that the GMD Theorem holds if the ground model has only a set of
urelements.
Theorem
If M is a transitive model of ZFCUR where some κ is not realized, then M
is definable (with parameters) in all of its generic extensions generated by
κ-closed forcings.
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Containing Lemma
Every set of urelements in M[G] is contained in some set of urelements in
M.

Proof.
This is because ker(ẋG)⊆ ker(ẋ) for every ẋ ∈ MP.

Lemma
In ZFUR, every permutation π of a set of urelements can be extended to
an automorphism of U. If π point-wise fixes ker(x), πx = x.

Proof.
Point-wise fix every urelement not in the set and let πx = {πy : y ∈ x} if x
is a set.
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Ground model definability
Theorem
Let M be a ctm of ZFUR + DCω -scheme + A is a proper class. Then M
has a generic extension in which M is not definable with parameters.

Proof.
Let P ∈ M be Fn(ω,2) and G be an M-generic filter over P. Suppose for
reductio that M = {x ∈ M[G] : M[G] |= φ(x, u̇G)}.

By the DCω -scheme, there is an infinite set of urelements B′ ∈ M disjoint
from ker(u̇) and B′ contains a new countable subset B in M[G]\M.
Moreover, there is another countable C ∈ M disjoint from ker(u̇)∪B′.

M[G] then has an automorphism that swaps C and B while point-wise
fixing ker(u̇).Since M[G] |= ¬φ(B, u̇G) and ker(u̇G)⊆ ker(u̇), it follows that
M[G] |= ¬φ(C, u̇G) and hence C /∈ M, which is a contradiction.
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Ground model definability
Theorem
Let M be a transitive model of ZFCUR + Plenitude. Then M is not
definable with parameters in any of its non-trivial generic extensions.

Proof.
Suppose that M ⊊ M[G] and M = {x ∈ M[G] : M[G] |= φ(x, u̇G)}. Fix some
żG ∈ M[G]\M such that żG ⊆ Vα(A)M for some α and A ∈ M.

By Plenitude and AC in M, there is a bijection f from Vα(A)M to a
B′ ∈ M. B = f [żG]⊆ B′ will then be a new set of urelements in M[G].

In M, B′ has a duplicate disjoint from ker(u̇) which has a new subset D.

By AC and Plenitude in M, there a duplicate C ∈ M of D that is disjoint
from ker(u̇). This gives an automorphism as before—contradiction.
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Destroy DCω1-Scheme

Lemma
In ZFCUR, if every set of urelements has a tail of size at least κ, then the
DCκ -scheme holds.

Theorem
Forcing over ZFCUR + Collection does not preserve the DCω1-scheme.

Proof.
Let M be a ctm of ZFCUR where every set of urelements has an ω1-tail.
Both Collection and the DCω1-scheme hold in M.

In M, let P= Col(ω,ω1) and G be M-generic over P.

In M[G], every set of urelements is countable by the Containing Lemma.
So A is a proper class but every set of urelements is countable, violating
the DCω1-scheme.
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Observation
Forcing over ZFCUR + Collection preserves the DCω -Scheme.

Proof.
Collection → DCω -Scheme over ZFCUR and forcing preserves
Collection.

Open Question
Does forcing over ZFCUR preserve the DCω -Scheme?
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Axiom resurrection
Theorem
Let M be a countable transitive model of ZFCUR + DCω -Scheme. Every
forcing extension of M has a forcing extension that satisfies the Reflection
Principle.

Proof.
Let M[G] be a forcing extension of M. By the following part of the
diagram,

Tail

Plenitude

Collection

A is a set

RP

we may assume that in M[G], A is a proper class but there is a least
cardinal κ not realized.
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Axiom resurrection

Theorem
Let M be a countable transitive model of ZFCUR + DCω -Scheme. Every
forcing extension of M has a forcing extension that satisfies the Reflection
Principle.

Proof.
Force with Col(ω,κ) in M[G] to M[G][H], where every set of urelements
becomes countable in M[G][H].

A is proper class in M so by the DCω -scheme in M, M satisfies that
(*) for every A ⊆ A , there is an infinite disjoint B ⊆ A .

By Containing, (*) is preserved by forcing and hence holds in M[G][H].
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Axiom resurrection

Theorem
Let M be a countable transitive model of ZFCUR + DCω -Scheme. Every
forcing extension of M has a forcing extension that satisfies the Reflection
Principle.

Proof.
This shows that every set of urelements in M[G][H] has an ω-tail.

It then follows from the diagram
Tail

Collection RP

that RP holds in M[G][H].
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A potentialist picture

Set-theoretic potentialism is the view that U is never completed—there
can always be more sets (as well as urelements).

Thus, from a potentialist point of view, ZFCUR + DCω -Scheme is already
“good enough” since Collection and RP are shown to be “necessarily
forceble” over this theory.
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Thank You!
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