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Abstract. The Fregean ontology can be naturally interpreted within set the-

ory with urelements, where objects are interpreted as sets and urelements, and

concepts as classes. We investigate how the size of reality, i.e., the number of
urelements, affects the Fregean abstraction principles. First, based on recent

work by Hamkins [7], we show that, in certain natural urelement set theories,

Basic Law V is equivalent to the urelements forming a set. Second, we con-
struct natural models of urelement set theory in which Hume’s Principle fails

for sets. Finally, assuming the consistency of an inaccessible cardinal, we pro-
duce a model of second-order urelement set theory with a global well-ordering,

where Hume’s Principle fails.

1. Introduction

Fregean abstractions principles aim to establish a certain correspondence be-
tween objects and concepts. Frege’s Basic Law V asserts that each concept is asso-
ciated with an object, called its extension, such that two concepts are co-extensional
if and only if they have the same extension. Another prominent instance of Fregean
abstraction is Hume’s Principle, according to which every concept is associated with
an object, called its number, such that two concepts are equinumerous if and only
if they have the same number. Although Frege’s system is inconsistent due to Rus-
sell’s paradox, the neo-logicist project has succeeded in using consistent fragments
of Frege’s system to recover arithmetic. On the other hand, the Zermelo-Fraenkel
set theory, as a different framework from Frege’s, provides a unified foundation for
mathematics. It is thus natural to investigate the relationship between these two
foundational frameworks.

The relationship between abstraction principles and set theory has been studied
extensively in the literature. Most of these studies focus on two issues. One is the
examination of the model-theoretic properties of theories of abstraction principles
using ZFC as a meta-theory (e.g., see Fine [4], Shapiro [14], and Shapiro & Roberts
[12]). The other is the attempt to develop set theory itself through abstraction
principles (e.g., see Boolos [2], Shapiro & Weir [15], and Shapiro & Uzquiano [13]).
However, there is another perspective to consider: how do abstraction principles
behave if we formulate them as set-theoretic principles?

To begin with, the Fregean framework can be naturally interpreted in the it-
erative conception of set: at the initial stage we have some basic objects called
urelements, i.e., non-sets that are members form sets, and then there are sets of
these urelements, sets of sets of them, and so on. In this picture, Fregean concepts
can be seen as classes of the objects formed in the iterative procedure, and the
concepts that are too big to coincide with sets are the proper classes. The con-
nection between the Fregean framework and set theory extends beyond this anal-
ogy: recent work by Hamkins [7] shows that ZF provides a deflationary account of

1



2 BOKAI YAO

Fregean abstractions principles. In particular, Hamkins shows that every model of
ZF equipped with definable classes has a second-order definable map fulfilling Basic
Law V ([7, Theorem 1]) as well as a second-order definable map fulfilling Hume’s
Principle ([7, Theorem 7]).

However, ZF set theory is not the most natural set-theoretic framework for study-
ing abstraction principles because it excludes urelements—every object in ZF is
assumed to be a set. Yet, abstraction principles should be universally applicable
(Shapiro [14] and Shapiro & Roberts [12]), meaning they are intended to talk about
all concepts along with all objects. Therefore, it is more natural to consider ab-
straction principles within set theory with urelements, a framework that allows all
kinds of objects to be members of sets. A natural question immediately arises: Is
ZF set theory with urelements still able to provide a deflationary account of Fregean
abstraction principles?

In this paper, we show that a deflationary account of abstraction principles in
urelement set theory turns out to be contingent upon the size of reality, i.e., how
many urelements there are. For example, in the models of some suitable urelement
set theories, a deflationary account of Basic Law V is available if and only if the
urelements form a set (Theorem 3 and 4 ); when there are unboundedly many
urelements, no deflationary account of Basic Law V is possible (Theorem 5). In
the case of Hume’s Principle, Gauntt[5] and Lévy [10] independently showed that
ZFUR has models with proper-class many urelements where cardinality for sets is
not definable; in other words, in these models, there is no definable map fulfilling
Hume’s Principle for sets. We improve upon their result by constructing models
of ZFUR + Reflection Principle + DCκ-scheme, for any given infinite cardinal κ,
where Hume’s Principle fails for sets (Theorem 7). Furthermore, we construct a
model of Kelley-Morse class theory that has a global well-ordering but no definable
map fulfilling Hume’s Principle (Theorem 12). The philosophical implications of
these results on Hume’s Principle are discussed at the end.

2. Preliminaries on urelement set theory

The language of urelement set theory, in addition to ∈, contains a unary predi-
cate A for urelements. The axioms of ZFUR (R for Replacement) include Founda-
tion, Pairing, Union, Powerset, Infinity, Separation, Replacement, Extensionality
for sets, and the axiom that no urelements have members (see [17, Section 1.2] for
the precise formulation of these axioms). ZFCUR is ZFUR + the Axiom of Choice.
Note that ZFCUR allows a proper class of urelements.

Although ZFCUR looks very much like the urelement analog of ZFC, there is, in
fact, a hierarchy of axioms that are independent from ZFCUR ( [17, Theorem 17]),
some of which are ZF-theorems. For instance, it is folklore that ZFCUR cannot
prove the Collection Principle and the Reflection Principle.

(Collection) ∀w, u(∀x ∈ w ∃yφ(x, y, u) → ∃v∀x ∈ w ∃y ∈ v φ(x, y, u)).
(RP) For every set x there is a transitive set t with x ⊆ t such that for
every x1, ..., xn ∈ t, φ(x1, ..., xn) ↔ φt(x1, ..., xn).

This is because ZFCUR has models where the urelements form a proper class but
every set of urelements is finite (see e.g., [17, Theorem 27 (3)])—call these models
finite-kernel models. In finite-kernel models, for every n ∈ ω, there is a set of
urelements of size n, but there is no corresponding collection set. In the subsequent
sections we will introduce some more ZFC-theorems that are not provable over
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ZFCUR. Thus, ZF(C)UR is a rather weak set theory, and the subscript is used to
emphasizing this point.

Now we review some basic notations and facts about ZFUR. Every object x
in ZFUR has a kernel, denoted by ker(x), which is the set of the urelements in
the transitive closure of {x}. A set is pure if its kernel is empty. V denotes the
class of all pure sets. Ord is the class of all ordinals, which are transitive pure
sets well-ordered by the membership relation. A will also stand for the class of all
urelements. A ⊆ A thus means “A is a set of urelements”. For any A ⊆ A , the
Vα(A)-hierarchy is defined as usual, i.e.,

V0(A) = A;
Vα+1(A) = P (Vα(A)) ∪A;
Vγ(A) =

⋃
α<γ Vα(A), where γ is a limit;

V (A) =
⋃

α∈Ord Vα(A).

For every x and set A ⊆ A , x ∈ V (A) if and only if ker(x) ⊆ A. U denotes the class
of all objects, i.e., U =

⋃
A⊆A V (A). The rank of an object x, denoted by ρ(x), is

the least ordinal α such that x ∈ Vα(A) for some A ⊆ A . When there is only a set
of urelements, for every α the objects of rank α form a set. An important feature
of ZFUR is that U has many non-trivial automorphisms. Every permutation π of a
set of urelements can be extended to a definable permutation of A by letting π be
identity elsewhere, and π can be further extended to a permutation of U by letting
πx be {πy : y ∈ x} for every set x. Such π preserves ∈ and thus is an automorphism
of U . For every x and automorphism π, π point-wise fixes x whenever π point-wise
fixes ker(x).

We will also discuss class theories with urelements. For instance, every model U
of ZFUR equipped with definable classes will be a model of Gödel-Benarys class the-
ory (GB) with urelements, while Kelley-Morse class theory (KM) with urelements
is the stronger theory which includes the impredicative comprehension scheme. In
the absence of a global well-ordering, different axiomatizations of urelement class
theory also come apart (see [17, Section 4.1]), but we shall not be concerned with
these subtleties in this paper. In class theory, every permutation π of a set of
urelements can also be extended to a permutation of classes that preserves the
second-order assertions by letting πX = {πx : x ∈ X} for every class X.

3. Basic law V in urelement set theory

A map X 7→ ϵX is said to fulfill Basic Law V if for each class X, ϵX is a first-
order object and for any classes X and Y , ϵX = ϵY ↔ ∀x(x ∈ X ↔ x ∈ Y ).
Such a map is also said to be an extension-assignment map. Hamkins [7] shows
that in every model of ZF equipped with definable classes, there is a second-order
definable extension-assignment map.1 One key step of Hamkins’ proofs uses Scott’s
trick, namely, every class can be represented by the set of its elements with minimal
rank. As we noted before, Scott’s trick is available as long as the urelements form
a set.

1Hamkins [7, Section 6] also explains how one should reconcile his result with Russell’s paradox.

Basically, Russell’s paradox proves the inconsistency between Basic Law V and a certain naive
comprehension principle for concepts. In the context of set theory, Russell’s paradox can be viewed

as the fact that no model Kelley-Morse class theory has a definable map fulfilling Basic Law V.
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Theorem 1 ([7, Thereom 1]). Let U be a model of ZFUR + “A is a set” equipped
with definable classes. Then U has a definable map that fulfills Basic Law V.

Proof. We first in the meta-theory fix a enumeration ψ0, ..., ψn, ... of the formulas of
urelement set theory, and this enumeration will be the standard part of a definable
enumeration in U . Furthermore, for every standard natural number k, ZFUR has a
definable Σk-truth predicate. Thus, given a definable class X of U , we let φ(X, ϵX)
be the second-order assertion

“ϵX is an ordered pair ⟨⌜ψn⌝, u⟩, where ψn is a Σk formula for some k and
u is the set of parameters p with minimal rank such that there is a Σk truth
predicate T with ∀x(x ∈ X ↔ T (⌜ψn⌝, ⟨x, p⟩)), and no preceding formula
ψi has this property.”

It then easy to check that the map X 7→ ϵX then fulfills Basic Law V (see [7, page
6]). □

The definability of the extension-assignment map X 7→ ϵX, as Hamkins notes, is
a major difference between his result and the earlier consistency proofs of Basic
Law V given by Parson [11], Bell [1] and Burgess [3]. This definability feature is
also philosophically intereseting since it provides a identity criteria for extensions
as objects, which is analogous to a solution to the famous Julius Caesar Problem
(see [7, Section 5] for more on this).

However, in urelement set theory, a deflationary account of Basic Law V is not
necessarily available.

Lemma 2. Let U be a model of ZFUR in which the following holds.

(*) For every A ⊆ A , there is a countably infinite B ⊆ A such that
B ∩A = ∅.

Then U , equipped with definable classes, has no parametrically definable map that
fulfills Basic Law V.

Proof. Suppose for reductio that in U some second-order formula φ(X, ϵX, P ) with
a parameter P defines a extension-assignment map such that for every definable
classes X,Y of U ,

ϵX = ϵY ↔ ∀x(x ∈ X ↔ x ∈ Y ).

P is a definable class of U so P = {x ∈ U : U |= ψ(x, z)} for some first-order
formula ψ and z ∈ U . In U , let A ⊆ A be an infinite set of urelements disjoint
from ker(z) and define X = {B ⊆ A : B −A is finite}.

Claim 2.1. A ∩ ker(ϵX) is not empty.

Proof of the Claim. Suppose otherwise. Let A′ ⊆ A be such that A′ ∼ ω and
A′∩ (A∪ker(ϵX)∪ker(z)) = ∅, which exists by (*). Let A1 be a countably infinite
subset of A and π be an automorphism that swaps A1 and A

′ while point-wise fixing
everything else (in particular, ϵX and P ). Since φ(X, ϵX, P ), φ(πX, πϵX, πP ) and
so φ(πX, ϵX, P ). Thus, πX and X must be co-extensional. But πX = {B ⊆ A :
B − πA is finite}, and A1 ∈ X but A1 /∈ πX–contradiction. ■

Fix some urelements a ∈ ker(ϵX) ∩ A and b /∈ ker(ϵX) ∪ ker(z). Let σ be the
automorphism that only swaps a and b. Consequently, σϵX ̸= ϵX. As X and
σX are co-extensional, it follows that ϵσX = ϵX. Moreover, φ(σX, σϵX, P ) so
σϵX = ϵσX = ϵX—contradiction. □
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The Axiom of Countable Choice (ACω), which states that every countable family
of non-empty sets admit a choice function, implies that every infinite set has an
countably infinite subset.

Theorem 3. Let U be a model of ZFUR + Collection + ACω equipped with
definable classes. The following are equivalent.

(1) The urelements in U form a set.
(2) U has a definable map that fulfills Basic Law V.
(3) U has a parametrically definable map that fulfills Basic Law V.

Proof. (1) → (2) follows from Theorem 1. It remains to prove (3) → (1). By
Lemma 2, it suffices to show that over ZFUR + Collection + ACω, the principle
(*) in Lemma 2 holds if the urelements do not form a set. So suppose that A is
a proper class and consider any A ⊆ A . Since we have for every n ∈ ω, there is
a B ⊆ A with B ∩ A = ∅ and |B| = n, it follows from Collection that there is an
infinite C ⊆ A that is disjoint from A, which has a countably infinite subset by
ACω. □

The use of Collection can be avoided if we assume a stronger choice principle.
The Axiom of Dependent Choice (DC), which is stronger than ACω, states that
for every relation on a set without terminal nodes, there is an infinite sequence
threading the relation. The Dependence Choice Scheme is a class version of the
DC.

(DC-scheme) If for every x there is some y such that φ(x, y, u), then for
every p there is an infinite sequence s such that s(0) = p and φ(s(n), s(n+
1), u) for every n < ω.

It is known that ZFCUR + DC-scheme does not prove Collection [17, Theorem 17].

Theorem 4. Let U be a model of ZFUR + DC-scheme equipped with definable
classes. The follow are equivalent.

(1) The urelements in U form a set.
(2) U has a definable map that fulfills Basic Law V.
(3) U has a parametrically definable map that fulfills Basic Law V. □

Proof. Again, we show that (3) → (1) by observing that over ZFUR + DC-scheme
the principle (*) in Lemma 2 holds if the urelements do not form a set. Assume
that A is a proper class and let A ⊆ A . Since for every x there is some y such
that ker(x) ⊊ ker(y) and ker(y)− (A∪ ker(x)) ̸= ∅, by the DC-scheme there is an
infinite sequence ⟨sn : n < ω⟩ such that ker(sn) ⊊ ker(sn+1) and ker(sn+1)− (A∪
ker(sn)) ̸= ∅ for every n < ω. So ker(s)−A is an infinite set of urelements disjoint
from A, which has a countably infinite subset by the DC-scheme. □

Note that the argument above also shows that ZFCUR does not prove the DC-
scheme, because (*) fails in the finite-kernel model.

Plenitude is the axiom that for every well-ordered cardinal κ, there is a set of
urelements of size κ. Next, we show that Plenitude is inconsistent with Basic Law
V without using any choice principle. We also note that over ZFUR, Plenitude does
not imply either Collection or the DC-scheme (although it implies both of them
over ZFCUR, see [17, Theorem 17 and Theorem 36]).

Theorem 5. No model of ZFUR + Plenitude, equipped with definable classes, has
a parametrically definable map that fulfills Basic Law V.
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Proof. Suppose for reductio that in some model U of ZFUR + Plenitude we can
define an extension-assignment map ϵ using some parameter P defined by some
first-order object z in U . Note that as in ZF, ZFUR proves that every set x has a
Hartogs number, ℵ(x), which is the least ordinal that does not inject into x. Let
κ = ℵ(ker(z)) and fix some set of urelements C of size κ. It follows that C must
have a subset A of size κ that is disjoint from ker(z). We can then find some D ⊆ A
of size κ+, which will have a subset A′ of size κ that is disjoint from A ∪ ker(z).
Define X = {B ⊆ A : B − A is finite}. As in the proof of Claim 2.1, ker(ϵX) ∩ A
cannot be empty since otherwise we can swap A and A′ to get a contradiction. But
then there is an automorphism σ that swaps some urelement a ∈ ker(ϵX)∩A with
some urelement b /∈ ker(ϵX) ∪ ker(z) while fixing P . Consequently, σϵX ̸= ϵX,
and ϵσX = ϵX because X and σX are co-extensional. However, σ fixes P so
σϵX = ϵσX—contradiction. □

While Russell’s paradox shows that Basic Law V is inconsistent with the im-
predicative comprehension, the theorems above reveal the tensions between Basic
Law V and the number of urelements. In other words, in the context of urelement
set theory Basic Law V can be seen as having a specific ontological commitment.

4. Hume’s Principle in urelement set theory

4.1. First-Order Hume’s Principle. A map x 7→ #x fulfills Hume’s Principle
for sets if it maps each set to some first-order object #x such that two sets x and y
are equinumerous just in case #x = #y. The existence of a map as such amounts
to the definability of cardinality for sets. With AC, cardinality is definable since we
can map each set x to the least ordinal to which x is equinumerous. More generally,
whenever the urelements form a set, for every set x we can again use Scott’s trick
and let #x = {y : y ∼ x ∧ ∀z(z ∼ x → ρ(z) ≤ ρ(y))}. Cardinality, however, is not
always definable when a proper class of urelements is allowed.

Theorem 6 (Gauntt [5]; Lévy [10]). There are models of ZFUR which have no
parametrically definable map that fulfills Hume’s Principle for sets. □

Since ZFUR, as we noted earlier, is a rather weak theory, two natural questions
arise. First, can ZFUR prove Hume’s Principle if it is complemented with some
ZF-theorems such as the Reflection Principle? Second, does any weaker choice
principle imply Hume’s Principle? To clarify the second question, let us review
the DCκ-hierarchy. For every infinite well-ordered cardinal κ, DCκ is the following
axiom generalizing DC.

(DCκ) For every set x and relation r ⊆ x<κ × x, if for every s ∈ x<κ, there
is some w ∈ x such that ⟨s, w⟩ ∈ r, then there is an f : κ → x such that
⟨f↾α, f(α)⟩ ∈ r for all α < κ.

The DCκ-scheme is the class version of DCκ.

(DCκ-scheme) If for every x there is some y such that φ(x, y, u), then there
is some function f : κ→ U such that φ(f↾α, f(α), u) for every α < κ.

Since ZFCUR proves DCκ for every κ, by a standard argument ZFCUR + A is a set
proves that the DCκ-scheme for every κ ([17, Lemma 23]). One can verify that the
DCω-scheme is indeed a reformulation of the DC-scheme and that the DCκ-scheme
is equivalent to the following ([17, Proposition 13]).
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For every definable class X, if for every s ∈ X<κ there is some y ∈ X with
φ(x, y, u), then there is some function f : κ→ X such that φ(f↾α, f(α), u)
for every α < κ.

We will show that no DCκ-scheme by itself implies Hume’s Principle for sets even
if we also assume the Reflection Principle, which strengthens Gauntt and Lévy’s
Theorem.

Theorem 7. Let κ be any infinite cardinal. There is a model of ZFUR + RP
+ DCκ-scheme which have no parametrically definable map that fulfills Hume’s
Principle for sets.

Proof. The first step is to build a permutation model that violates AC. We assume
some familiarity with permutation models and only provide some necessary details
of the construction. For a detailed presentation of this topic, see [9]. Fix some
infinite cardinal κ. We start with a model U of ZFCUR in which A is a set of
size κ+. Enumerate A with κ+ × κ+, i.e., A =

⋃
α<κ+ Aα, where each row Aα

has size κ+. Let G be the group of permutations of A such that for every π ∈ G
and α < κ+, πAα = Aα. Let I = {E ⊆ A : |E ∩ Aα| < κ+ for each α < κ+}
be an ideal of A . For every x, define sym(x) = {π ∈ GA : πx = x}; if x is
a set, define fix(x) = {π ∈ GA : πy = y for all y ∈ x}. We say an object is
symmetric if there some E ∈ I, called a support of x, such that fix(E) ⊆ sym(x).
The permutation model W is the class of all hereditarily symmetric objects, i.e.,
W = {x ∈ U : x is symmetric∧x ⊆W}, which is a model of ZFUR (see [9, Theorem
4.1], or [17, Theorem 33] for a more general proof).

Note that A ∈ W so there is only a set of urelements in W and consequently
Hume’s Principle still holds inW . The next step is to produce a model with proper-
class many urelements in which Hume’s Principle fails. In W , define a class of sets
I of urelements such that

I = {B ⊆ A : B is a subset of κ-many Aα}.
Let WI = {x ∈ W : ker(x) ∈ I }. I is a class ideal of A which picks out some
“small” sets of urelements, whileWI is the class of all objects inW whose kernel is
small in the sense of I . By [17, Theorem 26], WI |= ZFUR and there is a proper
class of urelements in WI .

Lemma 8. WI |= DCκ-scheme.

Proof. First observe that WI is closed-under κ-sequences. Consider any s : κ →
WI . In U , for each α < κ choose some Eα ∈ I to be a support of sα. Then⋃

α<κEα ∈ I, which is a support of s. And since ker(s) =
⋃

α<κ ker(sα), it follows

that ker(s) is also contained in a κ-block of Aα. Thus, s ∈ WI . Now suppose
that WI |= ∀x∃yφ(x, y, u), where u ∈ WI . Then for every s ∈ (WI )<κ there

is some y ∈ WI such that φWI

(s, y, u). By the DCκ-scheme in U , there is an

f : κ→WI with φWI

(f↾α, fα, u) for every α < κ. Since f ∈WI , it follows that
WI |= DCκ-scheme. □

Next we show that Reflection Principle holds in WI . We shall utilize the fol-
lowing observation made in [6, page 397] (though in a different context).

Theorem 9. ZFUR ⊢ Collection ∧ DC-scheme → RP. □
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Thus, to show WI |= Reflection Principle it suffices to check that WI satisfies
Collection. A permutation σ of A in U is said to be row-swapping if for every
α < κ+, σAα = Aβ for some β < κ+ (consequently, for every α, Aα = σAβ from
some β).

Lemma 10. Every row-swappoing σ in U is an automorphism of WI .

Proof. Let σ be a row-swappoing permutation of A . It suffices to show that GA , I,
and I are all fixed by σ. If π ∈ GA , then for every Aα, since Aα = σAβ for some β
and πAβ = Aβ , by automorphism it follows that (σπ)(σAβ) = σAβ ; so (σπ)Aα =
Aα and hence σπ ∈ GA (note here σπ is not σ ◦ π but {⟨σa, σ(πa)⟩ : a ∈ A ⟩}).
This shows that σGA = GA . If E ∈ I, then for every Aα, since Aα = σAβ for some
β and E ∩Aβ has size < κ+, σE ∩Aα has size < κ+ and hence σE ∈ I. Therefore,
σI = I. Similarly, if B is contained in κ-many Aα, then so is σB. Hence, σI = I
and the lemma is proved. □

Lemma 11. WI |= RP.

Proof. We show that WI |= Collection. Suppose that WI |= ∀x ∈ w∃yφ(x, y, u)
for some w, u ∈ WI . Let A =

⋃
α<κAα be a κ-block containing ker(w) ∪ ker(u)

and B =
⋃

α<κBα be another κ-block that is disjoint from A. It is enough to

show that WI |= ∀x ∈ w∃y ∈ V (A ∪ B)φ(x, y, u) because then a sufficiently tall
Vα(A ∪B) will be a desired collection set.

Consider any x ∈ w and y ∈WI such that WI |= φ(x, y, u). Let C =
⋃

α<κ Cα

be another κ-block containing ker(y)−A.

Claim 11.1. In U there is a row-swapping σ such that σ(B ∪ C) = B.

Proof of the Claim. Fix a κ-block D =
⋃

α<κDα disjoint from A ∪ B ∪ C. Split

B into two pair-wise disjoint κ-blocks B1 =
⋃

α<κB
1
α and B2 =

⋃
α<κB

2
α, where

each B1
α (and B2

α) is some row Aα. Then split D into two pair-wise disjoint κ-
blocks D1 =

⋃
α<κD

1
α and D2 =

⋃
α<κD

2
α in the same way. In U we can define

a row-swapping permutation σ of A as follows. For each α < κ+, let σBα = B1
α,

σCα = B2
α, σD

1
α = Cα and σD2

α = Dα. It is clear that σ(B ∪ C) = B. ■

By Lemma 10 σ is an automorphism of WI fixing x and u, so WI |= φ(x, σy, u)∧
σy ∈ V (A ∪B), which proves the lemma. □

Finally, we turn to the failure of Hume’s Principle in WI . Suppose for reductio
that φ(x,#x, u) defines a cardinality-assignment map with some parameter u ∈
WI . It follows that there must be two Aα and Aβ that are disjoint from ker(u).

Claim 11.2. WI |= Aα ≁ Aβ .

Proof of the Claim. Suppose for reductio that f is an injection from Aα to Aβ in
WI . Let E ∈ I be a support of f . Then there are two urelements a, b ∈ Aα − E.
Let π ∈ fix(E) swap only a and b. Then f(b) = πf(a) = f(a), contradicting the
assumption that f is an injection. ■

Claim 11.3. ker(#Aα) ⊆ ker(u).

Proof of the Claim. Suppose not. Fix some a ∈ ker(#Aα) − ker(u) and some
b /∈ ker(u) ∪ ker(#Aα). In WI let π be an automorphism that only swaps a and
b. Since π fixes u and πAα ∼ Aα, we have φ(πAα, π#Aα, u) so π#Aα = #πAα =
#Aα. But π#Aα ̸= #Aα—contradiction. ■
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By Lemma 10, in U there is an automorphism σ of WI that swaps only Aα and
Aβ . As σ point-wise fixes ker(u) and hence ker(#Aα), it follows that WI |=
φ(Aβ ,#Aα, u) so #Aβ = #Aα. Hence, WI |= Aα ∼ Aβ , contradicting Claim
11.2. This completes the proof of the theorem. □

4.2. Second-Order Hume’s Principle. A map X 7→ #X from classes to sets
fulfills Hume’s Principle simpliciter if it maps each class X to a first-order object
#X such that two classes X and Y are equinumerous just in case #X = #Y .
In class theory, von Neumann’s Axiom of Limitation of Size states that all proper
classes are equinumerous. Limitation of Size implies the Axiom of Global Well-
Ordering, which asserts the existence of a well-ordering of the universe U , and the
full Hume’s Principle since we can map each set to its well-ordered cardinal and
all proper classes to a fixed object which is not an ordinal, say, {{∅}}. A standard
argument shows that Global Well-Ordering is equivalent to Limitation of Size when
the urelements form a set ([17, Proposition 98]). We prove in the next theorem that
Global Well-Ordering alone does not suffice for Hume’s Principle.

Theorem 12. Assume the consistency of ZFC + an inaccessible cardinal. There
is a model of KM class theory with urelements + Global Well-Ordering which have
no definable map that fulfills Hume’s Principle.

Proof. Let V be a model of ZFC + an inaccessible cardinal κ. We first construct
a model U of ZFCUR + Plenitude by treating copies of ordinals as urelements. In
particular, we define V JOrdK in V by recursion as follows.

V JOrdK = ({0} ×Ord) ∪ {x̄ ∈ V : ∃x(x̄ = ⟨1, x⟩ ∧ x ⊆ V JOrdK)}.
For every x̄, ȳ ∈ V JOrdK,

x̄ ∈̄ ȳ if and only if ∃y(ȳ = ⟨1, y⟩ ∧ x̄ ∈ y);
Ā (x̄) if and only if x̄ ∈ {0} ×Ord.

Let U denote the model
〈
V JOrdK, Ā , ∈̄

〉
for the language of urelement set theory.

By [17, Theorem 7 and 9], U |= ZFCUR + Plenitude. Moreover, the class of pure
sets in U is isomorphic to V ([17, Lemma 8]) so U also contains (a copy of) κ as
an inaccessible cardinal.

In U , let λ = ℵκ+ and A be a set of urelements of size λ. Define

Uκ(A) =
⋃

B∈Pκ(A)

Vκ(B),

where Pκ(A) is the set of subsets of A with size < κ. By [16, Lemma 4.2], Uκ(A),
equipped with all of its subsets, is a model of KM with urelements + Global
Well-Ordering. Now suppose for reductio that φ(X,#X) defines a cardinality-
assignment function in Uκ(A).

Claim 12.1. For every class X of Uκ(A), #X is a pure set.

Proof of the Claim. Suppose #X is not pure for some class X of Uκ(A). Then in
Uκ(A) there will be an automorphism π swapping some a ∈ ker(#X) with some
b /∈ ker(#X), and so π#X ̸= #X. Since πX ∼ X, it follows that #X = #πX =
π#X, yielding a contradiction. ■
Since there are at least κ+-many cardinalities for the proper classes of Uκ(A), φ
thus defines an injection from κ+ into V Uκ(A), namley, Vκ. This is impossible as
Vκ has size κ. □
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This argument, in fact, shows that in Uκ(A) there is no definable cardinality-
assignment map which only uses first-order objects in Uκ(A) as parameters. Sup-
pose φ(X,#X,u) defines a cardinality-assignment map, where u ∈ Uκ(A). Then
the same argument would show that ker(#X) ⊆ ker(u) for every class X. This
means that we could inject κ+-many cardinalities into Vκ(ker(u)), but Vκ(ker(u))
only has size κ as |ker(u)| < κ—contradiction.

4.3. Philosophical remarks. We end with an discussion of the philosophical im-
plications these results might have on Hume’s Principle. Of course, to do so we must
adopt the so-called external perspective (Shapiro [14]), which is to investigate ab-
straction principles through other mathematical theories with presumably stronger
interpretive power. As we noted in the introduction, one necessary condition for
Hume’s Principle to be regarded as a fundamental principle of cardinality is its uni-
versality, i.e., the opening quantifiers in Hume’s Principle must range over concepts
of any kind. Consequently, models of urelement set theory are precisely where
Hume’s Principle should be tested from the external perspective. We have seen
models with urelements where Hume’s Principle fails, but whether this constitutes
evidence against the universality of Hume’s Principle depends on the naturalness
of these models. Therefore, the question remains: are these counter-models for
Hume’s Principle natural? Two features are shared by these models: the urele-
ments form a proper class, and a certain form of Axiom of Choice fails. The first
feature are certainly not be considered as pathological, as Hume’s Principle should
not be contingent upon how many urelements there are. The second feature in
these models, however, is worth remarking on.

Consider first the modelWI of Theorem 7, where Hume’s Principle fails for sets.
AlthoughWI does not satisfy AC, I argue that this does not make it a pathological
model. The justification for AC as a mathematical axiom often stems from its ability
to make mathematical objects well-behaved and to produce desirable consequences,
despite its paradoxical consequences. However, in urelement set theory, AC seems to
assert more than necessary, as it excludes any non-well-orderable sets even if these
sets do not exist within the mathematical universe V . Furthermore, it is clear
that AC holds for the pure sets in WI since these pure sets remain unchanged
throughout the construction. Consequently, not only does WI satisfy a strong
fragment of AC, but the non-well-orderable sets in WI also originate from outside
its mathematical universe V . This makes WI a mathematically natural model,
even for those who advocate for AC as a well-justified axiom in pure set theory.

Next, consider the model Uκ(A) of Theorem 12, where the full Hume’s Principle
fails. The fact that Global Well-Ordering holds in Uκ(A) makes it an extremely
natural model of urelement class theory, which provides strong evidence against the
unversality of Hume’s Principle. This is because Global Well-Ordering has highly
desirable consequences, including the Reflection Principle, the Collection Principle,
and the DCκ-scheme for every κ, which are provable in pure class theory but not
in urelement class theory when we only assume AC for sets ([17, Proposition 101])
In comparison with Global Well-Ordering, Limitation of Size, although it implies
Hume’s Principle, is rather ad hoc in this context. For one thing, assuming that
all proper classes are equinumerous simply lacks independent motivations. For
another, it is shown in Hamkins & Yao [8] that Limitation of Size places a signif-
icant constraint on the consistency strength of Bernays’ Second-order Reflection
Principle, which is an extremely natural large cardinal axiom. So in urelement
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class theory, it is Global Well-Ordering that should be considered as the standard
second-order generalization of AC.
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