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Abstract

I propose a new theory of mereology based on a mereological reflection principle.

Reflective mereology has natural fusion principles but also refutes certain principles

of classical mereology such as Universal Fusion and Fusion Uniqueness. Moreover,

reflective mereology avoids Uzquiano’s cardinality problem–the problem that classi-

cal mereology tends to clash with set theory when they both quantify over everything.

In particular, assuming large cardinals, I construct a model of reflective mereology

and second-order ZFCU with Limitation of Size. In the model, classical mereology

holds when the quantifiers are restricted to the urelements.

1 Introduction

In [28] and [29], Uzquiano observes that atomistic classical mereology is in tension with

set theory when both theories quantify over absolutely everything. It is thus interesting

to see if there can be a well-motivated mereology that sits well with set theory. In this

paper, I propose a new mereology based on a mereological reflection principle. This new

mereology is shown to have various interesting consequences and sit well with set theory.

The rest of the paper unfolds as follows. In Section 2, I lay out the formal setting

and present Uzquiano’s cardinality problem. In particular, I show that atomistic classical

mereology is inconsistent with set theory with the principle of Limitation of Size when

they share the same domain of quantification. In Section 3, I first motivate a mereolog-

ical reflection principle, based on which I introduce a new theory of parthood–reflective
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mereology. Reflective mereology is then shown to disprove two core principles in classical

mereology: Unrestricted Fusion and Weak Supplementation. Section 4 studies the inter-

action between reflective mereology and set theory. I show that a natural strengthening

of reflective mereology implies a mereological analog of the axiom of replacement; with

Limitation of Size, reflective mereology implies that things have a fusion just in case they

form a set. Furthermore, many axioms of set theory and the existence of certain large car-

dinals can also be derived from reflective mereology plus Limitation of Size. In Section 5,

I show that reflective mereology is consistent with set theory assuming the consistency of

second-order set-theoretic reflection. This is done by interpreting proper parthood in the

set-theoretic universe with urelements, which produces a natural model of both reflective

mereology and set theory. Moreover, in this model, classical mereology holds when the

quantifiers are restricted to the urelements. In Section 6, I discuss several philosophical

issues related to the formal results proved. In particular, I argue that reflective mereology

is a well-motivated theory of parthood.

2 Preliminaries and the Cardinality Problem

2.1 The formal language

We shall work in the language of plural quantification denoted by L ∝. In addition to the

logical symbols of first-order language, L ∝ contains plural variables “xx,yy,zz, ...” and

a predicate “∝”. “x ∝ yy” stands for “x is among yy”. Every instance of the following

comprehension scheme is always an axiom in any extension of L ∝:

(Plural Comprehension) ∃yy∀z(z ∝ yy ↔ ψ(z)),

where ψ(z) is a formula that does not contain any free occurrence of yy. Since the empty

plurality is allowed to exist (a similar treatment can be found in Burgess [3]), our treatment

of plural quantification is completely analogous to monadic second-order logic [2]. The

talk of pluralities is preferred because I wish to avoid talking about classes in the meta-

language. We shall not specify a deductive system for L ∝ since any standard deductive

system for second-order logic will suffice (for example, see Button and Walsh [31], p. 34).
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The plural language of mereology L ∝
< extends L ∝ by adding a binary first-order

predicate “<” which stands for “is a proper part of” (for recent studies on plural logic and

mereology, see [9]) and [8]).

Definition 2.1. xx ̸= /0 (xx are non-empty) =d f ∃y(y ∝ xx)

xx ∝∝ yy (xx are among yy) =d f ∀z ∝ xx(z ∝ yy) 1

xx ≪ y ( xx are proper parts of y) =d f ∀z ∝ xx(z < y)

x ⩽ y (x is a part of y) =d f x < y∨ x = y

xx ⩽⩽ y =d f ∀x ∝ xx(x ⩽ y)

Atom(x) (x is a mereological atom) =d f ∀y(y ≮ x)2

x◦ y (x overlaps y) =d f ∃z(z ⩽ x∧ z ⩽ y)

Fu(x,yy) (x is a fusion of yy) =d f ∀y ∝ yy(y ⩽ x)∧∀z ⩽ x∃w ∝ yy(w◦ z)

yy fuse =d f ∃xFu(x,yy)

It is only a matter of convenience that proper parthood is chosen to be primitive in L ∝
< : in

the new mereology that will be introduced later, it is proper parthood, rather than parthood,

that is used in the formulation of a key axiom. Alternatively, one can still use the parthood

symbol “≤” as the primitive symbol, then define “x < y” as “x ≤ y∧x ̸= y”. Our definition

of fusion is standard as in Tarski [25] [26] and Lewis [17]. It is immediate from the

definition that everything fuses itself 3 as well as the plurality of its proper parts.

L ∝
∈,Ur is the language of set theory with urelements which extends L ∝ by adding a

unary first-order predicate Ur and the membership relation ∈. Ur stands for “is a urele-

ment”. The following definitions are completely standard, which will be used in Section

4.

Definition 2.2. Set(x) =d f ¬Ur(x)

x ⊆ y =d f Set(x)∧∀z ∈ x(z ∈ y)

xx form a set =d f ∃x(Set(x)∧∀y(y ∈ x ↔ y ∝ xx))

1To ease the notation, most of time I will write ∀ϕ(x)ψ as shorthand for ∀x(ϕ(x) → ψ) and write
∃ϕ(x)ψ for ∃x(ϕ(x)∧ψ). Plural quantification is treated similarly.

2In this paper, “atoms” should always be understood as mereological atoms rather than urelements.
3More pedantically, every x is a fusion of the “improper” plurality that only consists of x. I shall omit

this subtlety from now on.
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xx ∈∈ y =d f ∀x ∝ xx(x ∈ y)

x ∝ xx∩ y =d f x ∝ xx∧ x ∈ y

z = x∪{x}=d f x ∈ z∧∀v ∈ x(v ∈ z)∧∀v ∈ z(v = x∨ v ∈ x)

z = {x,y}=d f x ∈ z∧ y ∈ z∧∀w ∈ z(w = x∨w = y)

z = ⟨x,y⟩=d f ∃w ∈ z(w = {x})∧∃v ∈ z(w = {x,y})∧∀v ∈ z(v = {x}∨ v = {x,y})
⟨x,y⟩ ∝ f f =d f ∃z ∝ f f (z = ⟨x,y⟩)
f f : xx −→ yy =d f ∀z ∝ f f∃x ∝ xx∃y ∝ yy(z = ⟨x,y⟩)∧∀x ∝ xx∃!y(⟨x,y⟩ ∝ f f )

f f : xx onto−−→ yy =d f f f : xx → yy∧∀y ∝ yy∃x(⟨x,y⟩ ∝ f f )

yy ⪯ xx =d f ∃ f f ( f f : xx onto−−→ yy)

Definition 2.3. The theory ZFCU2 consists of the following axioms (it is understood that

the formulas are taken to be their universal closure).

1. (Ur-Def) Ur(x)→∀y(y /∈ x)

2. (Ext) (Set(x)∧Set(y)∧∀z(z ∈ x ↔ z ∈ y))→ x = y

3. (Foundation) Set(x)∧∃y(y ∈ x)→∃z ∈ x∀v ∈ x(v /∈ z)

4. (Pairing) ∃z(Set(z)∧ z = {x,y})

5. (Union) Set(x)→∃z[Set(z)∧∀w(w ∈ z ↔∃y ∈ x(w ∈ y))]

6. (∈-Separation) xx ∝∝ yy∧ yy form a set → xx form a set

7. (∈-Replacement) xx ⪯ yy∧ yy form a set → xx form a set

8. (Infinity) ∃x[∃y ∈ x(Set(y)∧∀z(z /∈ y))∧∀w ∈ x(w∪{w} ∈ x)]

9. (Powerset) Set(x)→∃y∀z(z ∈ y ↔ z ⊆ x)

10. (The Axiom of Choice) Every set can be well-ordered.

Definition 2.4. The language L ∝
<,∈,Ur denotes L ∝

< ∪L ∝
∈,Ur
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2.2 Uzquiano’s cardinality problem

It is observed in Uzquiano [28] and [29] that plural classical mereology is in tension with

plural ZFC set theory when their quantifiers are both taken to be absolutely general. In

this section, I give a new presentation of Uzquiano’s cardinality problem.

We shall work in the hybrid language L ∝
<,∈,Ur, where mereological and set-theoretic

principles share the same domain of quantification .

Definition 2.5. Classical Mereology (CM) consists of the following four axioms.

(Transitivity) x < y∧ y < z → x < z

(Asymmetry) x < y → y ≮ x

(Weak-Supplementation) x < y →∃z < y¬(z◦ x)

(Unrestricted Fusion) xx ̸= /0 → xx fuse4

CM is an attractive theory of parthood adopted by Tarski [25] [26] and Lewis [17] [16].

Transitivity and Asymmetry will be taken for granted in this paper, as they are intuitive

principles governing proper parthood. Weak Supplementation is a plausible decomposition

principle: if x is a proper part of y, then y must have something more, namely, a leftover

z disjoint from x. This picture coheres with our conception of ordinary objects, and some

(e.g., Simons [23], p. 116 and Varzi [30] p. 110) even hold Weak Supplementation as

an analytic truth. The philosophical motivations for Unrestricted Fusion will be discussed

shortly.

It follows from CM that fusions are unique (Hovda [13, pp. 66-67]), namely:

(Fusion Uniqueness) Fu(y,xx)∧Fu(z,xx)→ y = z

Let uu denote the plurality of everything (i.e., x ∝ uu iff x = x). Uzquiano’s cardinality

arises when I consider two further principles.

(LS) xx form a set ↔ uu ⪯̸ xx.

4Although Asymmetry follows from Weak-Supplementation and Transitivity, it is useful to separate
them for reasons that will be clear.
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(Atomicity) ∃y ⩽ xAtom(y)

LS is known as von Neumann’s Limitation of Size, according to which a plurality of things

xx form a set just in case there is no surjective map from xx to everything there is. In

other words, things will form a set as long as they are not “too many”. Limitation of Size

seems to be a natural conception of set and provides a unified justification for important

axioms of ZFCU2 such as ∈-Replacement and the Axiom of Choice. Atomicity describes

an intuitive mereological structure since it is equivalent to the claim that everything is a

fusion of some mereological atoms (as we will see, the full strength of Atomicity is not

needed for the paradox to arise).

Now, Uzquiano’s cardinality problem is simply that the theory ZFCU2 + LS + CM +

Atomicity is inconsistent. The proof can be sketched as follows. By CM, there must be

more fusions than the atoms, so the atoms form a set by LS because they are not too many.

But everything is a fusion of some atoms by Atomicity, and by Fusion Uniqueness a set

of atoms can only produce a set of things. Therefore, the atoms must not form a set—-a

contradiction. To make this precise, let us start with a more general definition.

Definition 2.6. xx is a <-antichain =d f ∀v,w ∝ xx(v ̸= w →¬(v◦w))

We show that with LS, ZFCU2 + CM proves that every <-antichain must form a set. The

proof is by diagonalization.

Lemma 2.1. ZFCU2 + CM + LS ⊢ ∀xx(xx is a < -antichain → xx form a set)

Proof. Let aa be a <-antichain. We may assume that there are at least two things among

aa; otherwise aa form a set by Pairing (or, by the existence of the empty set). Suppose for

reductio that there is f f such that f f : aa onto−−→ uu, where uu is the plurality of everything.

Now define dd as follows.

x ∝ dd ↔ x ∝ aa∧ x ≮ f f (x)

Note that dd is non-empty. To see this, consider any a ∝ aa. Since f f is onto, there is

some b ∝ aa such that f f (b) = a. If b = a, then b ≮ a by Asymmetry; otherwise, b does

not overlap a and hence b ≮ a. Thus, b ≮ f f (b) and so b ∝ dd. In fact, there are at least
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two things among dd. Consider two different a1,a2 ∝ aa. Then there will be b1,b2 ∝ aa

such that f f (b1) = a1 and f f (b2) = a2; so b1 ̸= b2 and b1,b2 ∝ dd.

By Unrestricted Fusion, some z fuses dd. Then there is some c ∝ aa such that f f (c) =

z. If c < z, c must overlap some d among dd; d ∝ aa, so c = d and hence c ≮ f f (c) = z,

which is a contradiction. So c ≮ z. Then c ∝ dd so c ⩽ z. But c ̸= z. Otherwise, since

dd contain at least two things, there will be some e ∝ dd such that e ̸= c∧ e ⩽ c, which is

impossible because both e and c are among the antichain aa. This means that c < z, which

is a contradiction again.

Therefore, there is no f f such that f f : aa onto−−→ uu, i.e., uu ⪯̸ aa. By LS, aa form a

set.

We then show that under ZFCU2 + CM + Atomicity, the mereological atoms cannot

form a set.

Lemma 2.2. ZFCU2 + CM + Atomicity ⊢ ¬∃x(Set(x)∧∀y(Atom(y)→ y ∈ x))

Proof. Let aa be the plurality of all atoms. Suppose for reductio that aa form a set,

A. Then the power set P(A) exists. Define f f : P(A) \ {0} → uu as follows. For every

non-empty x ⊆ A, let f f (x) be the fusion of the members of x. f f is well-defined by

Unrestricted Fusion and Fusion Uniqueness. We claim that f f is also onto the plurality

of everything uu. For every z, Fu(z,yy) for some atoms yy by Atomicity; since A is the

set of all atoms, by ∈-Separation some set y ⊆ A will be the set of yy and so f f (y) = z.

By ∈-Replacement, it follows that uu form a set, which is a contradiction by Russell’s

paradox.

Theorem 2.3. ZFCU2 + LS + CM + Atomicity is inconsistent.

Proof. Let aa be the plurality of all atoms, which is clearly a <-antichain. By Lemma 2.1,

aa form a set, but this contradicts Lemma 2.2. 5

5Our presentation is different from Uzquiano’s in two ways. First, Uzquiano’s argument is based on the
following principle, which seems to be weaker than LS.

(Maximality) There is an injective map from the universe to the pure sets.

LS implies Maximality. For, LS implies that if xx and yy both fail to form a set, then there is a bijective
map between them; and neither the pure sets nor the universe could form a set. However, it is unclear
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The argument above in fact shows that under ZFCU2 + LS + CM, there can be at

most a set of atoms and so there must be proper-class-many atomless gunks. Appealing to

Atomicity is thus an overkill: as long as there are not enough atomless gunks, the theory

ZFCU2 + LS + CM is inconsistent. Uzquiano considers different attempts to resolve this

unwelcome situation in [28] and [29] but does not find any of them satisfactory. In the rest

of this paper, I aim to solve Uzquiano’s cardinality problem by proposing a new mereology

that can coexist with set theory in harmony.

Before turning to this new mereology, it is worth considering how axioms of mereology

can be justified. While to fully address this question will take us too far afield, it may be

useful to reflect on CM, which is often seen as a paradigmatic theory of parthood. Firstly,

it should be a virtue of a theory of parthood if it is compatible with the existence of ordi-

nary objects. And since things always have a fusion according to CM, ordinary composite

objects are preserved by CM in our ontology. Secondly, an axiom of mereology, if not

completely intuitive, should be motivated by independent philosophical considerations,

otherwise the axiom might be seen as ad hoc. Two philosophical considerations motivate

Unrestricted Fusion. One is that there should be no ontological arbitrariness regarding

mereological fusion (Lewis [17] [16]), and this is perfectly respected by Unrestricted Fu-

sion since it asserts that fusion always happens. The other consideration is often known as

Composition as Identity—the doctrine that the mereological fusion of some parts is noth-

ing “over and above” the parts, i.e., once we are committed to the parts, we are immediately

committed to their mereological fusion (see Sider [22] for more on this). While there is

no space to fully evaluate these two philosophical views, it is safe to say that they cer-

tainly provide enough motivations for CM. That said, there are at least two desiderata for

a well-motivated mereology: (i) it should have fusion principles that are compatible with

ordinary objects; (ii) its axioms should be motivated by independent philosophical consid-

whether ZFCU2 + CM + Atomicity + Maximality is inconsistent (the theory will indeed be inconsistent
if we assume that Limitation of Size holds for the pure sets, but then the full Limitation of Size becomes
equivalent to Maximality). Yet this point does not concern us: reflective mereology will be proved to be
consistent with LS and hence with Maximality.

Second, it is claimed in [28] and [29] that with Maximality, the size of the universe is in-
accessible in second-order terms. Again, without full Limitation of Size, this is not true (see
this question on MathStackExchange: https://math.stackexchange.com/questions/4174937/

show-that-v-is-a-strong-limit-in-second-order-t ).
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erations. By Theorem 2.3, we know that any mereology that is consistent with ZFCU2 +

LS + Atomicity must differ with CM to some extent. So if a well-motivated mereology

that avoids the cardinality problem is to be found, it will presumably have some weaker

fusion principles and be motivated by some different philosophical theses. But ideally, this

new mereology will inherit some merits of CM and at the same time provide reasons for

why CM fails when it is formulated with absolute generality.

3 Reflective Mereology

3.1 Reflection principles in set theory

The view that the universe of sets is “absolutely indescrible”, which can be traced back to

Cantor[4], asserts that any true statement about the universe of sets is already true in some

initial fragment of the universe. In contemporary set theory, this indescribability concep-

tion of set is cashed out by the set-theoretic reflection principles, according to which any

true set-theoretic statement is already true in some transitive set (where a set is transitive

if every member of it is a subset of it). What is it to say that a statement is true in a set?

The standard definition is the following.

Definition 3.1. For any s and any formula ψ in the language L ∝
∈ , ψ∈s is defined induc-

tively as follows.

If ψ is an atomic sentence other than x ∝ yy , ψ∈s is ψ;

if ψ is x ∝ yy, ψ∈s is x ∝ yy∩ s;

if ψ is ϕ ∨χ , ψ∈s is ϕ∈s ∨χ∈s;

if ψ is ¬ϕ , ψ∈s is ¬ϕ∈s;

if ψ is ∃xϕ , ψ∈s is ∃x ∈ sϕ∈s;

if ψ is ∃xxϕ , ψ∈s is ∃xx ∈∈ sϕ∈s.
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Intuitively, ψ∈s is what ψ would assert if we were to take the members of s to be all there

is, and to say that ψ is true in s is to say that ψ∈s holds. The second-order reflection

principle, due to Bernays [1], is the following scheme in ZFCU2.

(RP2) ψ →∃s(s is a transitive set∧ψ∈s).6

According to RP2, no statement can pin down the universe of sets since whatever holds

in the universe already holds in a transitive set. While a thorough discussion of reflection

principles is beyond the scope of this paper, there are mainly two motivations for RP2.

First, just as Limitation of Size, RP2 provides a unified justification for almost all axioms

of second-order ZF: Bernays [1] shows that RP2, ∈-Separation, Ext and Foundation jointly

imply all the axioms of second-order ZF and the existence of several large cardinals. Sec-

ond, it is common for set theorists to hold that the universe of sets is maximal in the sense

that it contains as many mathematical objects as possible. RP2, as a way of turning this

philosophical view into a precise mathematical statement, is believed by many (Gödel[10],

Maddy [18] [19], Tait [24], Koellner [15]) to be intrinsically justified, namely, it is justi-

fied on the basis of the conception of set. Gödel[10], for example, believes that all large

cardinal axioms should follow from certain form of reflection principles.7 It is reasonable,

therefore, to adopt the indescribability conception of set articulated by RP2.

3.2 Reflective mereology

The indescribability of the set-theoretic universe naturally gives rise to a more general

metaphysical thesis: the universe of everything, which includes both sets and non-sets,

is also indescribable. In particular, the universe cannot be described in any mereological

6This particular version is formulated by Burgess[3] in the language of set theory with plural quantifi-
cation. More rigorously, RP2 is the following axiom scheme

∀x0, ...,xn∀xx0, ...,xxm(ψ(x0, ...,xn,xx0, ...,xxm)→∃t(t is a transitive set∧ψ
∈t(x0, ...,xn,xx0, ...,xxm)),

where ψ is a formula in L ∝
∈ whose free variables are among x0, ...,xn,xx0, ...,xxm.

7In fact, RP2 is quite limited in its power, as its consistency strength is bounded by some small large car-
dinal at the lower end of the large-cardinal hierarchy (e.g., an ω-Erdös cardinal suffices, see Kanamori [14]
Excercise 9.18. However, we note that RP2 can be quite strong if we expand the language (see Robert[20])
or assume the existence of a lot of urelements (see Hamkins and Yao[12]).
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terms. This gives rise to the Mereological Reflection Principle: any true statement is al-

ready true in some parthood initial segment of the universe. But note that since everything

is a <-initial segment given Transitivity, the Mereological Reflection Principle even has a

more concise formulation:

Any true statement is already true in something.

Of course, here “true in” needs to be spelled out in the language of mereology. For-

tunately, there is no difficulty of making this sense of “true in” precise by considering a

form of <-relativization. To begin with, we define the mereological relativization of plural

terms. Plural Comprehension allows us to talk about arbitrary pluralities, e.g., the plural-

ity of everything. Now suppose that we live in an object o and thus only have access to

its proper parts; then the meaning of a plural term should change with respect to o. For

example, “everything” from the perspective of people in o should be all the proper parts

of o. This motivates the following definition.

Definition 3.2. For any yy and any x, yyx (the <-relativization of yy to x) denotes the
proper parts of x among yy, i.e., z ∝ yyx if and only if z ∝ yy∧ z < x.8

Furthermore, given any statement ψ and object x, we can simply restrict all the quantifiers

and plural terms in ψ to the proper parts of x. The resulting statement, ψ<x, will be what

ψ would mean if the proper parts of x were all there is. So “ψ is true in x” simply means

that ψ<x holds. The formal definition goes as follows.

Definition 3.3. For any t and any statement ψ is in L ∝
< , ψ<t is defined inductively as

follows.

If ψ is an atomic formula other than x ∝ yy, ψ<t = ψ;

if ψ is x ∝ yy, ψ<t = x ∝ yyt ;

if ψ is ϕ ∨χ , ψ<t = ϕ<t ∨χ<t ;

if ψ is ¬ϕ , ψ<t = ¬ϕ<t ;

8Note that yyx can be empty, which is allowed in our plural logic.
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if ψ is ∃xϕ , ψ<t = ∃x < tϕ<t ;

if ψ is ∃xxϕ , ψ<t = ∃xx ≪ tϕ<t .9

Now we can give a precise formulation of the Mereological Reflection Principle.

Definition 3.4. The Mereological Reflection Principle (MRP) is the following scheme in

L ∝
< .

(MRP) ψ →∃tψ<t .10

A quick remark: it is important that we relativize to the proper parts of t. If < is replaced

with ⩽, MRP will become a trivial consequence of CM, as ψ always implies ψ⩽u, where

u is the fusion of everything.

Is MRP a well-motiaved axiom of mereology? It seems that MRP indeed satisfies the

first desideratum proposed at the end of Section 2, namely, it is motivated by some in-

dependent philosophical consideration. In particular, the metaphysical thesis underlying

MRP seems to be clear, i.e., the whole universe, which includes absolutely everything, is

indescribable. Moreover, this metaphysical picture is a natural generalization of the Canto-

rian conception of set which is commonly accepted by set theorists. Although whether the

universe of everything should be similar to the universe of sets in terms of indescribability

is an question that I cannot fully address here, this should not undermine the general mo-

tivation for studying MRP (consider the case of Composition as Identity and Unrestricted

Fusion).

Now let us consider whether MRP can lead to a mereology with interesting fusion

principles. To start, MRP immediately implies that the universe is “junky”.

Proposition 3.1. MRP ⊢ ∀x∃y(x < y)
9This definition also works for any language that extends L ∝

< with some singular predicates (e.g.,
L ∝

<,∈,Ur). That is, if ψ is an atomic formula with a new singular predicate, ψ<t is just ψ; and the rest
is the same. This extended definition will be used in Section 4 and 5.

10As before, MRP is really the following axiom scheme.

∀x0, ...,xn∀xx0, ...,xxm(ψ(x0, ...,xn,xx0, ...,xxm)→∃tψ<t(x0, ...,xn,xx0, ...,xxm)),

where ψ is a formula in L ∝
< whose free variables are among x0, ...,xn,xx0, ...,xxm.
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Proof. Fix an a. Applying MRP to ∃y(y = a), we have ∃t∃y < t(y = a), which is just

∃ta < t. Hence, ∀x∃yx < y.

This then implies that nothing can contain everything as a part given Asymmetry and

Transitivity.

Theorem 3.2. MRP+Asymmetry+Transitivity ⊢ ¬∃x∀y(y ⩽ x)

Proof. Suppose there is a u such that ∀y(y ⩽ u). By Proposition 3.1, it follows that there

is a v such that u < v. Then v ⩽ u. By Asymmetry, v ̸= u so v < u. By Transitivity, u < u,

which contradicts Asymmetry.

Unrestricted Fusion implies that there is a fusion of everything, so it is refuted by MRP.

A new fusion principle is thus needed. The following principle of Mereological Separation

serves as a natural replacement of Unrestricted Fusion.

(M-Separation) xx ̸= /0∧∃y(xx ≪ y)→ xx fuse.11

In words: if xx are a non-empty plurality of proper parts of some y, then xx fuse. M-

Separation is simply a localized version of Unrestricted Fusion: it asserts that among

things that have bounded by some object in terms of parthood, fusion happens as much as

possible. Since Transitivity and Asymmetry are taken for granted, we have arrived at the

following new theory of mereology.

Definition 3.5. Reflective Mereology (RM) the theory that consists of Transitivity, Asym-
metry, M-Separation, and all instances of MRP.

3.2.1 Fusion principles in RM

What pluralities fuse in RM? Let Finitary Fusion be the principle (as a scheme) that for

every x1, ..., xn, where n is a natural number, there is a fusion of them.

Lemma 3.3. RM ⊢ Finitary Fusion
11Versions of this principle are also discussed in Cotnoir [5] and Bostock [27].
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Proof. Fix a1, ..., an. We then have ∃y(y = a1)∧ ...∧∃y(y = an). By applying MRP to

this conjunction, we have that ∃t(∃y < t(y = a1)∧ ...∧∃y < t(y = an)). This means that

a1 < t ∧ ...∧an < t. By M-Separation, a1, ..., an have a fusion.

To obtain more interesting fusion principles in RM, it is useful to introduce the notion

of <-absoluteness.

Definition 3.6. A formula ψ is <-absolute if for any t, x1, ...,xn such that x1, ...,xn < t and
any yy1, ...,yym,

ψ(x1, ...,xn,yy1, ...,yym)
<t ↔ ψ(x1, ...,xn,yy1, ...,yym).

ψ is upward <-absolute (downward <-absolute) if the left-to-right (right-to-left) implica-
tion holds.

Intuitively, the truth of an <-absolute statement does not depend on how its quantifiers are

interpreted. For example, proper parthood, parthood and overlap are all <-absolute.

Proposition 3.4. Assume Transitivity. The following formulas are <-absolute.

(i) x ∝ yy, x < y, and x ⩽ y;

(ii) x◦ y.

Proof. Fix t, a, b, cc such that a,b < t and some arbitrary cc.

For (i), a ∝ cc, a < b, and a ⩽ b are <-absolute by Definition 3.3.

For (ii), We see that

a◦b ⇔∃z(z ⩽ a∧⩽ b)

⇔∃z(z < t ∧ z ⩽ a∧ z ⩽ b) (⇒ by Transitivity)

⇔ [∃z(z ⩽ a∧ z ⩽ b)]<t

⇔ (a◦b)<t

14



The next lemma is analogous to a weaker version of the Collection Principle in set

theory.

Lemma 3.5. Let ψ be an upward <-absolute formula with at most two free variables.

RM ⊢ ∀xx[xx fuse∧∀x ∝ xx∃zψ(x,z)→∃t∀x ∝ xx∃z < tψ(x,z)]

Proof. Let aa and b be such that Fu(b,aa) and ∀x ∝ aa∃zψ(x,z). We then have

∀x ∝ aa∃zψ(x,z)∧∃y y = b (1)

Applying MRP to (1), it follows that there is some t such that

∀x < t(x ∝ aa →∃z < tψ(x,z)<t)∧b < t (2)

By Transitivity, every x among aa is a proper part of t since their fusion b is a proper part

of t. So consider any a ∝ aa. By (2), there is some z such that z < t and ψ(a,z)<t ; ψ is

upward <-absolute, so ψ(a,z) and hence t is as desired.

Theorem 3.6. (M-Replacement−)

Let ψ be an upward <-absolute formula with at most two free variables.

RM ⊢ ∀xx∀yy[(xx fuse∧∀x ∝ xx∃!zψ(x,z)∧∀y ∝ yy∃x ∝ xxψ(x,y))→ yy fuse]

Proof. Let aa, bb and c be such that Fu(c,aa) and ∀x ∝ aa∃!zψ(x,z)∧ ∀y ∝ bb∃x ∝

aaψ(x,y). We need to show that bb have a fusion. Since ψ is upward <-absolute we

can apply Lemma 3.5 to get a t such that ∀x ∝ aa∃z < tψ(x,z). If bb ≪ t, then by M-

Separation bb will have a fusion. So it remains to show that bb ≪ t. Let b be among bb.

ψ(a,b) for some a among aa. Then there is some d such that d < t and ψ(a,d). It follows

that b = d and hence b < t, which completes the proof.

M-Replacement− can be taken as saying that if xx fuse and there are no more yy than xx in

a certain way, yy also fuse. A full mereological replacement principle will be proved later

when set-theoretic machinery becomes available.
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3.2.2 Weak Supplementation

I now turn to the other non-classical facet of RM: RM turns out to refute Weak Supple-

mentation and Fusion Uniqueness. This will be proved by exploring the consequences of

the theory RM + Weak Supplementation, which eventually leads to a contradiction. First,

I show that under RM + Weak Supplementation, some object x will have a mereological

complement. i.e., the fusion of all the things that do not overlap x. Second, I observe that

the fusion of x and its complement, which exists by Finitary Fusion, contains everything

as a part given Weak Supplementation, which contradicts Theorem 3.2.

To begin with, over RM, Weak Supplementation and Fusion Uniqueness are equiva-

lent.

Definition 3.7. Mub(y,xx)(y is a minimum upper bound of xx) =d f xx ⩽⩽ y∧∀w(xx ⩽⩽

w)→ y ⩽ w)

The next lemma says that every fusion is a minimum upper bound under RM + Weak

Supplementation. We simply adopt the argument in Hovda [13, p. 66] in which only

Finitary Fusion is needed.

Lemma 3.7. RM+Weak Supplementation ⊢ ∀xx∀z(Fu(z,xx)→ Mub(z,xx))

Proof. Let Fu(b,aa) and suppose that every a in aa is such that a ⩽ c for some c. We need

to show that b ⩽ c. By Finitary Fusion, some d fuses b and c. Suppose for reductio that

d ̸= c. Since c ⩽ d, c < d. By Weak Supplementation, there is some s such that s ⩽ d and

s does not overlap c. Then s must overlap b, so there is some w such that w ⩽ s and w ⩽ b.

As b fuses aa, w then overlaps some a among aa. a ⩽ c by assumption so by Transitivity

w overlaps c. But w ⩽ s so by Transitivity again s overlaps c, which is a contradiction.

Therefore, d = c and so b ⩽ c.

Corollary 3.7.1. RM+Weak Supplementation ⊢ ∀xx∀x∀y(Fu(x,xx)∧ xx ≪ y → x ⩽ y)

Proof. Suppose Fu(a,aa) and aa ≪ b. By Lemma 3.7, Mub(a,aa) and hence a ⩽ b.

Lemma 3.8. RM ⊢ Weak Supplementation ↔ Fusion Uniqueness
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Proof. For the left-to-right direction, suppose Weak Supplementation holds and let b and

c both fuse some aa. By Lemma 3.7, Mub(b,aa) and Mub(c,aa), so b ⩽ c∧ c ⩽ b, which

implies b = c by Asymmetry. For the other direction, suppose Fusion Uniqueness holds

and let a and b be such that a < b. Suppose for reductio that ∀y ⩽ b(y ◦ a). Then b

fuses a. It follows that a = b since a fuses a, which contradicts Asymmetry. Thus, ∃y ⩽

b¬(y◦a).

The following decomposition principle will be useful later.

(Strong Supplementation) ∀w(w ⩽ x → w◦ y)→ x ⩽ y

Strong Supplementation implies Weak Supplementation by Asymmetry. We show that the

converse also holds under RM (the argument is the same as the one in Hovda [13, pp.

68-69]).

Lemma 3.9. RM+Weak Supplementation ⊢ Strong Supplementation

Proof. Let a and b be such that ∀x(x ⩽ a→ x◦b). We wish to show that a⩽ b. By Finitary

Fusion, some z fuses a and b. Since z fuses z, by Lemma 3.8 it suffices to show that z also

fuses b, which will then imply z = b and hence a ⩽ b. So it remains to show z fuses b.

Clearly, b ⩽ z. Consider any w such that w ⩽ z. w overlaps a or b. If it overlaps a, then

there is some v such v ⩽ w and v ⩽ a; v then overlaps b by our assumption, and since v ⩽ w

by Transitivity w also overlaps b. Therefore, every part of z overlaps b and so z fuses b,

which completes the proof.

So far only Finitary Fusion, Transitivity and Asymmetry have been used. I now aim to

utilize reflection to prove that under RM+Weak Supplementation, there is some x such

that all the things disjoint from x have a fusion.

Definition 3.8. For any x, ddx denotes the plurality such that y ∝ ddx iff ¬(y◦ x).

Lemma 3.10. RM+Weak Supplementation ⊢ ∃x ddx ̸= /0

Proof. Proposition 3.1 implies that x < y for some x and y. By Weak Supplementation,

there is some z ⩽ y such that ¬(z◦ x), so ddx are non-empty.
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The next lemma concerns absoluteness, which only uses Transitivity. It says that if x fuses

yyt for some x < t, then x fuses yy in t.

Lemma 3.11. Transitivity ⊢ ∀t∀x < t∀yy(Fu(x,yyt)→ Fu(x,yy)<t).

Proof. Fix t, a < t and some arbitrary cc. We see that

Fu(a,cct)⇔∀x ∝ cct(x ⩽ a)∧∀y ⩽ a∃z ∝ cct(z◦ y)

⇒∀x < t(x ∝ cct → x ⩽ a)∧∀y < t(y ⩽ a → (∃z < t(z ∝ cct ∧ (z◦ y)<t))

⇔ (Fu(a,cc))<t .

The second implication holds because “z◦ y” is <-absolute.

Lemma 3.12. RM+Weak Supplementation ⊢ ∀x(ddx ̸= /0 → ddx fuse)

Proof. Suppose dda are non-empty for some a, i.e., there is some u such that ¬(u ◦ a).

And suppose for reductio that ¬∃zFu(z,dda). So we have the following

∃y(y = u)∧∃y(y = a)∧¬∃zFu(z,dda) (3)

By MRP there is some t such that

u < t ∧a < t ∧¬∃z < t(Fu(z,dda)
<t). (4)

We claim that there is some z such that z < t and Fu(z,ddt
a). First note that ddt

a are non-

empty as u ∝ ddt
a. Since ddt

a ≪ t, by M-Separation, there is some v such that Fu(v,ddt
a).

By Corollary 3.7.1, v ⩽ t. But v cannot be identical to t. Otherwise, a < v and hence a

overlaps something in ddt
a, which is impossible. Thus, v < t and Fu(v,ddt

a). Fu(v,ddt
a)

implies Fu(v,dda)
<t by Lemma 3.11, so

∃z < t(Fu(z,dda)
<t). (5)

This contradicts (4). Therefore, ∃zFu(z,dda).

Lemma 3.13. RM+Weak Supplementation ⊢ ∀x,y(x ⩽ y∧ddx ⩽⩽ y →∀z(z ⩽ y))
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Proof. Let a, b be such that a ⩽ b and dda ⩽⩽ b. Consider any z and any part of z, v. We

claim that v must overlap b. Either v overlaps a or not. If it does, since a ⩽ b, v overlaps b;

if not, then v ∝ dda so v ⩽ b and hence v◦b . Thus, every part of z overlaps b. By Lemma

3.9, we can then apply Strong Supplementation to get that z ⩽ b for every z.

Theorem 3.14. RM ⊢ ¬Weak Supplementation∧¬Fusion Uniqueness

Proof. We show that the theory RM + Weak Supplementation is inconsistent. By Lemma

3.10 and Lemma 3.12, there is some a such that dda have a fusion b. By Finitary Fusion,

there is some u that fuses a and b; so a ⩽ u and dda ⩽ u. By Lemma 3.13, this implies

that x ⩽ u for every x, which contradicts Theorem 3.2. This shows that the negation of

Weak Supplementation holds in RM. By Lemma 3.8, the negation of Fusion Uniqueness

also holds in RM.

However, Weak Supplementation does not have to fail everywhere in RM. In Section

5, I show that it is consistent with RM and set theory that classical mereology holds when

the quantifiers are restricted to the urelements.

4 Reflective Mereology and Set Theory

In this section, I investigate the interaction between reflective mereology and set theory.

We show that a natural strengthening of RM, RM+, implies a full mereological replace-

ment principle in L ∝
<,∈,Ur. As a result, RM+ + Limitation of Size implies that things fuse

just in case they form a set. Furthermore, most of the axioms of ZFCU2 and the existence

of various large cardinals can also be derived from RM+ + Limitation of Size.

We now start to work in the hybrid plural language L ∝
<,∈,Ur (see Section 2.1). RM,

formulated in L ∝
<,∈,Ur, can also talk about sets (e.g., by Proposition 3.1, RM implies that

every set is a proper part of something). However, a key gradient of reflection principles

seems to be missing in MRP in this context. Reflection principles normally assert that

every truth is reflected by an initial segment of the universe, where an initial segment

should contain all the things from which it is built up; but without any further assumptions,

it is possible for a set x to be a proper part of y while some member of x is not. This

consideration motivates the following definition of initial segment.
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Definition 4.1. IS(t) =d f ∀x,y(x < t ∧ y ∈ x → y < t)

That is, t is an initial segment just in case every member of its proper parts is also a proper

part of it. Note that I do not assume that initial segments are transitive sets (nor the other

way around). Accordingly, a natural strengthening of MRP is the following.

(MRP+) ψ →∃t(IS(t)∧ψ<t),

where ψ is in L ∝
<,∈,Ur (see footnote 9 for the definition of ψ<t .)

Definition 4.2. RM+ = Asymmetry+Transitivity+M-Separation+MRP+

Many set-theoretic statements are <-absolute for initial segments with respect to mere-

ological relativization.

Proposition 4.1. The following formulas are <-absolute (Definition 3.6) for initial seg-
ments.

(i) x = w∪{w}

(ii) x = {w,v}

(iii) x = ⟨w,v⟩

Proof. Let t be an initial segment and a,b,c be proper parts of t. For (i):

(a = b∪{b})<t ⇔ [b ∈ a∧∀v ∈ b(v ∈ a)∧∀v ∈ a(v = b∨ v ∈ b)]<t

⇔ b ∈ a∧∀v < t(v ∈ b → v ∈ a)∧∀v < t(v ∈ a → v = b∨ v ∈ b)

⇔ b ∈ a∧∀v ∈ b(v ∈ a)∧∀v ∈ a(v = b∨ v ∈ b)

⇔ a = b∪{b}

The second line implies the third line because t is an initial segment.

For (ii):

(a = {b,c})<t ⇔ [b ∈ a∧ c ∈ a∧∀x ∈ a(x = b∨w = c)]<t

⇔ b ∈ a∧ c ∈ a∧∀x < t(x ∈ a → x = b∨w = c)
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⇔ b ∈ a∧ c ∈ a∧∀x(x ∈ a → x = b∨w = c)

⇔ a = {b,c}

For (iii),

(a = ⟨b,c⟩)<t ⇔ [∃w ∈ a(w = {b})∧∃v ∈ a(v = {b,c})∧∀v ∈ a(v = {b}∨ v = {b,c})]<t

⇔ (∃w ∈ a(w = {b}))<t ∧ (∃v ∈ a(v = {b,c}))<t ∧ (∀v ∈ a(v = {b}∨ v = {b,c})<t

⇔∃w ∈ a(w = {b})∧∃v ∈ a(v = {b,c})∧∀v ∈ a(v = {b}∨ v = {b,c})

⇔ a = ⟨b,c⟩

The third equivalence holds because t is initial and “x = {w,v}” is <-absolute.

Lemma 4.2. Let f f be a plurality. For any initial segment t and any x,y < t, if (⟨x,y⟩ ∝

f f )<t , then ⟨x,y⟩ ∝ f f .

Proof. Let t be initial and a,b be proper parts of t.

(⟨b,c⟩ ∝ f f )<t ⇔ [∃w ∝ f f (w = ⟨b,c⟩)]<t

⇔∃w < t(w ∝ f f t ∧ (w = ⟨b,c⟩)<t)

⇒∃w(w ∝ f f ∧ (w = ⟨b,c⟩)

⇔ ⟨b,c⟩ ∝ f f

The third implication holds because (w = ⟨b,c⟩)<t implies w = ⟨b,c⟩ for w < t, as shown

in the previous proposition.

These absoluteness results enable us to prove the full mereological replacement: if xx

fuse and there are no more yy than xx, then yy also fuse.

Theorem 4.3. RM+ ⊢ ∀xx,yy(xx fuse∧ yy ⪯ xx)→ yy fuse

Proof. The idea is exactly the same as in the proof of Theorem 3.6. Let aa and bb be such

that aa is fused by c and bb ⪯ aa. Then there is some f f such that f f : aa onto−−→ bb. So we
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have

∀x ∝ aa∃z(⟨x,z⟩ ∝ f f )∧∃y(y = c) (6)

By applying MRP+ to it, we see that there is some initial segment t such that

∀x < t[x ∝ aa →∃z < t(⟨x,z⟩ ∝ f f )<t ]∧ c < t (7)

Since c fuses aa, aa ≪ t. So for every x ∝ aa, there is some z < t such that (⟨x,z⟩ ∝ f f )<t .

By Lemma 4.2, this implies that ⟨x,z⟩ ∝ f f . Thus, we have

∀x ∝ aa∃z < t(⟨x,z⟩ ∝ f f ) (8)

As before, to show bb have a fusion it suffices to show that bb ≪ t given M-Separation.

Consider any b among bb. Since f f is onto, there is some a ∝ aa such that ⟨a,b⟩ ∝ f f .

But then b must be a proper part of t as f f is a function.

The situation with Limitation of Size also becomes different. RM+ and LS jointly

imply the following principle, which says that a non-empty plurality of things fuse just in

case they form a set.

(Limitation of Fusion) xx ̸= /0 → (xx fuse ↔ xx form a set))

Theorem 4.4. RM++LS ⊢ Limitation of Fusion

Proof. We first show that every non-empty plurality form a set only if they have a fusion.

Let s be the set of aa, which are non-empty. By the same proof in Proposition 3.1, we see

that s < t for some initial segment t and so aa ≪ t. By M-Separation, aa have a fusion.

For the other direction, let aa fuse and suppose for reductio that uu ⪯ aa. By Theorem

4.3, uu fuse, which contradicts Theorem 3.2. Hence, uu ⪯̸ aa so aa form a set by LS.

Furthermore, the theory RM+ +Limitation of Size+Extensionality also provides a

succinct axiomitization of ZFCU2 −Foundation.

Theorem 4.5. RM++LS+Extensionality ⊢ ZFCU2 −Foundation
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Proof. Empty Set. Let aa be the empty plurality, Clearly, there is no onto function from

aa to uu. So aa form a set, which is the empty set.

Pairing. For any a and b, by Finitary Fusion, we know that they fuse. By Limitation

of Fusion, {a,b} exists.

Union. Let s be a set and aas be such that x ∝ aas iff ∃y(y ∈ s∧x ∈ y). We may assume

that aas are not empty. By MRP+, s is a proper part of some initial segment t. But then

aas are proper parts of t: if x ∈ y and y ∈ s, then y < t so x < t. By M-Separation, aas fuse

and by Limitation of Fusion, the aas form a set which is the union of s.

∈-Separation. Let bb form a set and aa ∝∝ bb. By Limitation of Size, there is no

surjective map from bb onto everything. Then there is no surjective map from aa onto

everything and hence aa form a set by Limitation of Size again.

∈-Replacement. Let s be the set of bb and suppose that aa ⪯ bb. bb then have a fusion

by Limitation of Fusion; then by 4.3, aa form a fusion so aa form a set by Limitation of

Fusion again.

Infinity. By Union and Pairing, it follows that

∀x∃y(y = x∪{x})∧∃z(z = 0), (9)

where 0 is the empty set. By MRP+, there is some initial segment t such that

∀x < t∃y < t(y = x∪{x})<t ∧0 < t (10)

By Lemma 4.1, it follows that

∀x < t∃y < t(y = x∪{x}). (11)

Now let ppt be the proper parts of t that are sets. The proper parts of t form a set because

they fuse; so by ∈-Separation, ppt must also form a set. Let s be the set of ppt . s is

inductive: clearly, 0 ∈ s; if x ∈ s, then x∪{x} is in s.

Power Set. Let s be a set and xxs be its members. By ∈-Separation we have

∀yy ∝∝ xxs(yy form a set)∧∃y(y = s) (12)
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Applying MRP+ to it gives us an initial segment t such that

∀yy ≪ t[yy ∝∝ xxt
s → (∃z∀v(v ∈ z ↔ v ∝ yy))<t ]∧ s < t (13)

Since t is initial, xxs ≪ t. So we have

∀yy ∝∝ xxs∃z < t∀v(v ∈ z ↔ v ∝ yy) (14)

Now let ww be the plurality such that w ∝ ww iff w < t and w is a subset of s. By M-

Separation and Limitation of Fusion, ww form a set v. By Extensionality, v is the power

set of s.

Choice. By a standard argument, Limitation of Size implies that there exists a bijection

between the plurality of the ordinals and the universe. So every set can be well-ordered.

This completes the proof.

RM++Limitation of Size also implies the existence of large cardinals because it im-

plies the set-theoretic reflection.

Proposition 4.6. RM++LS ⊢ RP2

Proof. (Sketch) Let ψ be a formula in L ∝
<,∈,Ur. Suppose ψ holds. Then by MRP+, there

is some initial segment t such that ψ<t . Let s be the set of the proper parts of t, which

exists by Limitation of Fusion. s is transitive: if x ∈ y and y ∈ s, y < t so x < t and hence

x ∈ s. By an easy induction on ψ , it follows that ψ<t is equivalent to ψ∈s (see Definition

3.1). Therefore, there is a transitive set s such that ψ∈s.

It is known that ZFC2 + RP2 implies the existence of proper-class many inaccessible

cardinals, Mahlo cardinals, and weakly-compact cardinals (see Tait [24]). And it is proved

in Yao[32] that ZFCU2 + RP2 + LS and ZFC2 + RP2 are mutually interpretable and that

as a consequence, ZFCU2 + RP2 + LS also yields the existence of these large cardinals.

This concludes our discussion of how reflective mereology and set theory interact.12

12A further question to explore is whether RM (or some pure mereology extending RM) can serve as a
foundation of mathematics by itself given that classical mereology, as shown in Hamkins and Kikuchi [11],
falls short on this task.
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5 A Model of RM+ + ZFCU2

In this section, I provide a natural interpretation of the hybrid theory RM+ + Atomicity

+ ZFCU2 + LS in ZFCU2 + RP2. Since the latter theory can be shown to be consistent

relative to ZFC2 + RP2
13, this shows that reflective mereology is consistent with set the-

ory. Also, our interpretation of proper parthood shows that it is consistent with RM+ +

Atomicity (and set theory) that parthood behaves classically on the urelements.

We start in ZFCU2 +RP2 + LS with an assumption that the urelements form a set

of size 2κ for some infinite cardinal κ . We then extend the language L ∝
∈,Ur by adding a

constant symbol f. Let Af be the axiom that f is a bijection from the set of urelements to

P(κ)\{ /0}.

Definition 5.1. ZFCU+
2 = ZFCU2 + LS + Af.

Definition 5.2. ARM+ = RM+ + Atomicity

ZFCU+
2 +RP2 will serve as the base theory within which ARM+ is interpreted.14 With f

we can simulate a classical proper parthood relation on the urelements. We say that x is a

“classical proper part” of y just in case f(x)⊊ f(y). For any object x, let TC(x) denote the

transitive closure of x, i.e., TC(x) is the smallest transitive set t such that every member

of x is in t. ZFCU+
2 certainly proves that everything has a transitive closure (the transitive

closure of any urelement is the empty set). Then x is said to be a “proper part” of y just

in case either x is a classical proper part of y, or x is a classical part of something in the

transitive closure of y. Formally,

Definition 5.3. x ⊏ y =d f ∃v,w(v = f(x)∧w = f(y)∧ v ⊊ w)

x ⊑ y =d f x ⊏ y∨ x = y

x◁ y =d f x ⊏ y∨∃z(x ⊑ z∧ z ∈ TC(y))

x⊴ y =d f x◁ y∨ x = y

13See Theorem 3.3 in Yao [32]
14Another way to think about this is to start with a model M = ⟨M,P(M),∈M ,UrM ⟩ of ZFCU2 +RP2

with 2κ many urelements and then in M, we fix a bijection f from the set of urelements to P(κ) \ { /0} as
a parameter. Now I proceed to produce a model N = ⟨M,P(M),∈M ,UrM ,<N ⟩ of RM+ + Atomicity +
ZFCU2 + LS.
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◁ is a definable relation in ZFCU+
2 +RP2 and will be the intended interpretation of proper

parthood. We then define an interpretation σ from L ∝
<,∈,Ur to L ∝

∈,Ur,f

Definition 5.4. Let ψ be in L ∝
<,∈,Ur. We define ψσ inductively as follows.

If ψ is atomic but not some x < y , ψσ is ψ;

if ψ is x < y, ψσ is x◁ y;

if ψ is χ ∨ϕ , ψσ is χσ ∨ϕσ ;

if ψ is ¬ϕ , ψσ is ¬ϕσ ;

if ψ is ∃xϕ , ψσ is ∃xϕσ ;

if ψ is ∃xxϕ , ψσ is ∃xxϕσ .

σ clearly preserves logical consequence. And trivially, if ψ ∈ L ∝
<,∈,Ur is an axiom of

ZFCU2 + LS, then ψσ is provable in ZFCU+
2 +RP2. So to show that ZFCU2 + LS +

ARM+ is consistent realtive to ZFCU+
2 +RP2, it suffices to show that if ψ is an axiom of

ARM+, ZFCU+
2 +RP2 will prove ψσ , i.e., all the axioms of ARM+ hold in ZFCU+

2 +

RP2 when proper parthood is interpreted as ◁.

We unpack some interpreted formulas and axioms for reference.

(x◦ y)σ =d f ∃z(z⊴ x∧ z⊴ y)

Atom(x)σ =d f ∀y(y ⋪ x)

Fu(x,yy)σ =d f ∀y ∝ yy(y⊴ x)∧∀z⊴ x∃y ∝ yy(y◦ z)σ

Transitivityσ =d f ∀x,y,z(x◁ y∧ y◁ z → x◁ z)

Asymmetryσ =d f ∀x,y(x◁ y → y ⋪ x)

Atomicityσ =d f ∀x∃y(y⊴ x∧Atom(y)σ )

M-Separationσ =d f ∀xx(xx ̸= /0∧∃y(∀x ∝ xx(x◁ y))→∃zFu(z,xx)σ )

.
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Proposition 5.1. (ZFCU+
2 )

For any x and y,

(i) if x,y are urelements, a◁b iff a ⊏ b;

(ii) if x,y are sets, x◁ y iff x ∈ TC(y);

(iii) if x is a set and y is a urelement, x ⋪ y;

(iv) if x ∈ y, then x◁ y;

(v) if x ∈ TC({y}), then (x◦ y)σ .

(vi) if x is a urelement, then there is some urelement z such that z⊴ x∧Atom(z)σ .

Proof. (i) holds because because the transitive closure of any urelement is empty. The

left-to-right direction of (ii) holds because x ⊏ y only if both x and y are urelements. (iii)

holds for the same reason. (iv) holds since x ∈ y implies x ∈ TC(y). For (v), suppose that

x ∈ TC({y}). Then either x = y or x ∈ TC(y) so we may assume x ∈ TC(y); so x◁ y,

which implies (x ◦ y)σ . For (vi), if x is a urelement then f(x) is a non-empty subset of κ .

Fix α ∈ f(x). There is some urelement z such that f(z) = {α} and so z ⊑ x; but then z⊴ x

and clearly, Atom(z)σ .

From 5.1 (i), it follows that ◁ behaves classically on the urelements as ⊊ behaves the same

as classical proper parthood on P(κ)\{ /0}. More precisely, for any non-empty plurality of

urelements xx, there is a unique urelement y such that Fu(y,xx)σ .

Proposition 5.2. ZFCU+
2 ⊢ ∀xx[(xx ̸= /0∧∀x ∝ xx Ur(x))→∃!y(Ur(y)∧Fu(y,xx)σ )]

Proof. Let aa be a non-empty plurality of urelements. Since in ZFCU+
2 the urelements

form a set, aa form a set A. Let z =:
⋃

a∈A f(a), which is a non-empty subset of κ . Then

there is some urelement y such that f(y) = z. It is then easy to check that Fu(y,aa)σ and

the existence such urelement y is unique.

Similarly, it can be easily seen that Weak Supplementationσ also holds when the quanti-

fiers are restricted to the urelements. That is, if x and y are urelements and x◁y, then there

is some urelement z such that z⊴ y and ¬(z◦ x)σ .
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Lemma 5.3. ZFCU+
2 ⊢ Asymmetryσ ∧Transitivityσ ∧Atomicityσ

Proof. For Asymmetryσ , suppose that x◁ y. By 5.1 (iii), we may assume that either x,y

are both sets, or x,y are both urelements. In the former case, y ⋪ x by Foundation; in the

latter, y ⋪ x by the definition of ⊏.

For Transitivityσ , suppose that x◁ y and y◁ z. If either they are all sets or they are all

urelements, we will have x◁ z by definition of ◁ and 5.1 (ii). If not, only two possibilities

remain by 5.1 (iii): either (a) x is a urelement, while y and z are sets, or (b) z is a set, while

x and y are urelements. If (a) holds, it follows that there is a k such that x ⊑ k∧ k ∈ TC(y)

and y ∈ TC(z) ; so k ∈ TC(z) and hence x◁ z. In case (b), x ⊏ y, and there is some k such

that y ⊑ k∧ k ∈ TC(z); then x ⊑ k and so x◁ z.

For Atomicityσ , fix an x. By 5.1 (vi), we may assume x is a set. If TC(x) contains

a urelement a, then by 5.1 (vi) again there is some urelement b such that Atom(b)σ and

b⊴a, which implies b⊴ x. If x is a pure set, then /0⊴ x and Atom( /0)σ .

We next verify that ZFCU+
2 +RP2 proves M-Separationσ . Facts in Proposition 5.1

will be used without further mention.

Lemma 5.4. ZFCU+
2 ⊢ ∀y∀xx(xx ̸= /0∧ y is a set of xx → Fu(y,xx)σ )

Proof. Let y be the set of xx. Then for every x ∝ xx, x ∈ y and hence x⊴ y. Consider any z

such that z◁ y. Then there is some k such that z ⊑ k∧ k ∈ TC(y). We wish to show that z

“overlaps” some x among xx. Suppose that z is a urelement. Since k ∈ TC(y), k ∈ TC({x})
for some x ∝ xx and so (k ◦ x)σ ; clearly, z⊴ k and by Transitivityσ , it follows that (z◦ x)σ .

If z is a set, then we have z ∈ TC(y) and so z ∈ TC({x}) for some x ∝ xx and hence (z◦x)σ .

Therefore, Fu(y,xx)σ .

Lemma 5.5. ZFCU+
2 ⊢ M-Separationσ

Proof. Let y and xx be such that ∀x ∝ xx(x◁y), where xx are non-empty. We first observe

that xx form a set. Define s to be

s = TC({y})∪{v : Ur(v)∧∃k(v ⊑ k∧ k ∈ TC({y}))}
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s is a set by ZFCU+
2 and the fact that the urelements form a set, and it is clear that xx are

members of s by checking the definition of ◁. So by ∈-Separation it follows that xx form

a set z and hence Fu(z,xx)σ by the previous lemma,

Finally, let us turn to MRPσ .

Definition 5.5. x is ⊏-closed =d f ∀y,z(y ∈ x∧ z ⊏ y → z ∈ x)

Proposition 5.6. If t is a transitive set that is ⊏-closed, then for every x, x◁ t if and only

if x ∈ t

Proof. Suppose x◁ t. If x is a set, x ∈ TC(t) so x ∈ t as t is transitive. If x is a urelement,

then for some k, x ⊑ k∧ k ∈ TC(t); so k ∈ t and hence x ∈ t because t is ⊏-closed. The

other direction is by 5.1 (iv).

Transitive and ⊏-closed sets that are sufficiently tall will have the following nice prop-

erty.

Lemma 5.7. (ZFCU+
2 ) Let t be such (i) t is transitive and ⊏-closed; (ii) f ∈ t; (iii) t is

sufficiently tall.15 For any ψ ∈ L ∝
<,∈,Ur, any x0, ...,xi and any xx0, ...,xx j,

[ψ(x0, ...,xi,xx0, ...,xx j)
σ ]∈t ↔ [ψ(x0, ...,xi,xx0, ...,xx j)

<t ]σ

Proof. The proof is by induction on the complexity of ψ .

Atomic cases. Suppose ψ is x ∝ xx. Then (ψσ )∈t = (x ∝ xx)∈t = x ∝ xx∩ t. But,

x ∈ xx∩ t ⇔ x ∝ xx∧ x ∈ t

⇔ x ∝ xx∧ x◁ t

= (x ∝ xx∧ x < t)σ

= ((x ∝ xx)<t)σ

15The height of any transitive set t is measured by Ord∩ t. Here, “t is sufficiently tall” can be understood
as “the full second-order model ⟨t,P(t),∈⟩ satisfies ZFCU2”, in which case the height of t must be an
inaccessible cardinal.
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The second equivalence holds because t is transitive and ⊏-closed. Hence, (ψσ )∈t ↔
(ψ<t)σ 16.

Suppose ψ is x < y. Then ψσ is x◁y. Since t is transitive, sufficiently tall and contains

f, “x◁ y” is absolute for t, i.e., (x◁ y)∈t iff x◁ y. But x◁ y is [(x < y)<t ]σ . Therefore,

(ψσ )∈t ↔ (ψ<t)σ .

Inductive steps. Suppose ψ is χ ∨ϕ . Then

(ψσ )∈t = (χσ )∈t ∨ (ϕσ )∈t

⇔ (χ<t)σ ∨ (ϕ<t)σ (induction hypothesis)

= [(χ ∨ϕ)<t ]σ

= (ψ<t)σ .

Suppose ψ is ¬χ . Then

(ψσ )∈t = ¬[(χσ )∈t ]

⇔¬[(χ<t)σ ] (induction hypothesis)

= [(¬χ)<t ]σ

= (ψ<t)σ .

Suppose ψ is ∃xϕ .

(ψσ )∈t = (∃xϕ
σ )∈t

= ∃x(x ∈ t ∧ (ϕσ )∈t)

⇔∃x(x◁ t ∧ (ϕ<t)σ )

= ∃x[(x < t)σ ∧ (ϕ<t)σ ]

= ((∃xϕ)<t)σ

= (ψ<t)σ .

16For the last identity, it is a trivial observation that nothing will be affected if we let (x ∝ xx)<t just be
x ∝ xx∧ x < t. So I shall adopt this way of relativization here.
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The second equivalence holds by induction hypothesis and the fact that t is transitive and

⊏-closed. Finally, suppose ψ is ∃xxϕ . By the same reasoning, we will have

(ψσ )∈t = ∃xx(xx ∈∈ t ∧ (ϕσ )∈t)

⇔∃xx(∀y(y ∝ xx → y◁ t)∧ (ϕ<t)σ )

= ∃xx[(xx ≪ t)σ ∧ (ϕ<t)σ ]

= ((∃xxϕ)<t)σ

= (ψ<t)σ .

Theorem 5.8. For every axiom ϕ of ARM+, ZFCU+
2 +RP2 ⊢ ϕσ .

Proof. In view of Lemma 5.3 and 5.5, it remains to verify that if ϕ is an instance of MRP+,

ϕσ holds. Any such ϕ will be of the following form.

∀x0, ...,xi∀xx0, ...,xx j[ψ →∃t(IS(t)∧ψ
<t)]. (15)

Thus, we need to show that

∀x0, ...,xi∀xx0, ...,xx j[ψ
σ →∃t(IS(t)σ ∧ (ψ<t)σ )]. (16)

So fix x0, ...,xi,xx0, ...,xx j and suppose that ψσ holds. Let u be the set of all urelements.

Then we have

ψ
σ ∧∃x(x = f)∧∃x(x = u)∧ZFCU2. (17)

where ZFCU2 is the conjunction of all the axioms of ZFCU2. By RP2, it follows that there

is a transitive set t such that

(ψσ )∈t ∧ f ∈ t ∧u ∈ t ∧ (ZFCU2)
∈t . (18)

t is sufficiently tall since it satisfies all the axioms of ZFCU2. t is ⊏-closed for the trivial
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reason that all the urelements are in t. Lemma 5.7 thus applies, so we have

(ψ<t)σ . (19)

It is easy to see that IS(t)σ holds (see Definition 4.1). For, if z ∈ y and y◁ t, then y is a set

so y ∈ TC(t); so z ∈ TC(t) and hence z◁ t. Therefore,

∃t(IS(t)σ ∧ (ψ<t)σ ). (20)

This completes the proof.

6 Some Philosophical Remarks

Let us consider whether RM satisfies the two desiderata proposed in Section 2. Namely, a

well-motivated mereology should

(i) have fusion principles that are compatible with the existence of ordinary objects
and (ii) be motivated by independent philosophical considerations.

For (ii), the two novel axioms of RM, as noted earlier, both have independent philosoph-

ical motivations. MRP can be seen a way of articulating the metaphysical thesis that the

universe of everything is indescribable, which is a natural generalization of the Canto-

rian conception of set. M-Separation is guided by one metaphysical principle underlying

Unrestricted Fusion—there should be no arbitrary restriction on when things have a mere-

ological fusion. And since Uzquiano’s cardinality problem shows that Unrestricted Fusion

takes this principle too far in the presence of certain set-theoretic axioms, M-Separation

seems to be a natural way of weakening Unresricted Fusion when the domain of quantifi-

cation includes everything. The situation here is thus analogous to using ∈-Separation as

a replacement of the Naive Comprehension Principle in set theory in response to Russell’s

Paradox.

For (i), while RM refutes Unrestricted Fusion, it implies Finitary Fusion and a weaker

version of Mereological Replacement, which allows “small” pluralities to fuse. So RM
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has no difficulty of allowing ordinary objects to exist. Furthermore, RM+ implies the full

Mereological Replacement; and with Limitation of Size, it implies Limitation of Fusion.

In fact, Limitation of Fusion has been brought up as an alternative fusion principle in many

places (see Rosen [21] and Uzquiano [28]), yet it was often dismissed eventually due to the

lack of independent justification. Within the framework of reflective mereology, however,

Limitation of Fusion follows as a theorem. Suffice it to say that reflective mereology has

intuitive and interesting fusion principles.

The similarity between fusion and set formation under reflective mereology may draw

some skepticism, especially in view of the somewhat surprising result that RM refutes

Weak-Supplementation and Fusion Uniqueness (see Theorem 3.14). One might wonder:

why should < in RM be interpreted as proper parthood after all?

Firstly, we know that any mereology that avoids Uzquiano’s cardinality problem has

to differ with CM in some respect. And whether Weak Supplementation should be seen

as an analytic truth about parthood is, in fact, a controversial issue (for recent discussions

on this matter, see Donnelly [7] and Cotnoir [6]). While the prima facie plausibility of

Weak Supplementation may come from our everyday experiences with ordinary objects,

its failure in RM suggests that this decomposition principle should not be taken as an

absolutely general principle. Also, one should note that reflective mereology does not

force Weak Supplementation to fail everywhere: as we have seen in the previous section,

there is a model of reflective mereology and set theory where < behaves classically on the

urelements. However, reflective mereology does not impose any substantial mereological

structure on the urelements either,17 which allows one to adopt their favorite mereological

structure on urelements.

Secondly, the fact that < behaves similarly as “in the transitive closure of” (and hence

fusion behaves similarly as set formation) is not a good reason to deny that < deserves

its mereological reading. On the contrary, there is a natural sense in which things in the

transitive closure of a set are parts of the set since a set is “made up” precisely by things in

its transitive closure. Indeed, this is part of the intuition behind Definition 5.3, which can

be stated as follows.
17There can be models of RM+ and set theory where the urelements do not have any interesting mereo-

logical structure.
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(Set-Part) Set(s)→∀x(x < s ↔∃z ∈ TC(s)(x ⩽ z))

In words: x is a proper part of a set s if and only if, x is part of something in the transitive

closure of s. According to Set-Part, Socrates and all the atoms that compose Socrates will

all be proper parts of {Socrates}.18 Set-Part fits nicely with reflective mereology. For

instance, given Set-Part everything is an initial segment (Definition 4.1) and hence RM
becomes equivalent to RM+. Also, by the same argument as in Lemma 5.4, one can show

that, under Set-Part, sets are fusions of their members. The model constructed in the last

section indeed satisfies Set-Part and serves as a natural model of RM+.19

18This seems to have an bizarre consequence that {Socrates}, as an abstract object, has concrete objects
as its parts. However, the same situation can happen whenever Finitary Fusion holds: the fusion of /0 and
Socrates is arguably abstract but it has Socrates a part. In any case, Set-Part is not part of reflective mereology
but only a complementary principle one might consider to adopt. I thank an anonymous referee for raising
this worry.

19Notably, Set-Part differs from Lewis’ principle in [17] that the parts of a non-empty set are all and only
its non-empty subsets. It is not known if Lewis’ principle is consistent with RM + ZFCU2 + LS.
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