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The iterative conception of set
V0 = /0;
Vα+1 = P(Vα);
Vγ =

∪
α<γ Vα , where γ is a limit;

V =
∪

α<Ord Vα .

V
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First-order reflection

Reflection principles in set theory assert that V is indescribable.

Lévy-Montague Reflection
∀α∃β > α∀v ∈ Vβ (φ(v)↔ φVβ (v)).

Theorem (Lévy, Montague)
The Lévy-Montague Reflection Principle holds in ZF.

Remark. For this reason, first-order reflection is seen as a consequence of
the iterative conception of set.
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Second-order reflection

Bernays’ Reflection
(RP2) ∀X[φ(X)→∃t(t is transitive∧φt(X∩ t))], where φ is any formula
in the language of class theory.

Theorem (Bernays)
RP2 implies that there are proper-class many weakly-compact cardinals.

Theorem (Reinhardt, Silver)
RP2 + KM is consistent relative to ZFC + an ω-Erdős cardinal.

An ω-Erdős cardinal is consistent with V=L, so RP2 is a weak large
cardinal axiom.
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Set Theory with Absolute Generality

6 / 39



Reflection Principles in Pure Set Theory Set Theory with Absolute Generality First-Order Reflection RP2 with Urelements

Absolute generality

The idea of absolute generality: we can quantify over absolutely
everything.

ZFC is not an absolutely general theory: it assumes that everything is a
set.
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Urelements

Urelements are members of sets that are not themselves sets. And they do
not necessarily form a set.

Zermelo (1930) actually considered set theory with a class of urelements.
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Iterative conception with urelements

Let A be a set of urelements.
V0(A) = A;
Vα+1(A) = P(Vα(A))∪Vα(A);
Vγ(A) =

∪
α<γ Vα(A), where γ is a limit;

V(A) =∪
α∈Ord Vα(A).

Let A be the class of urelements (not necessarily a set).
The whole universe U =

∪
A⊆A V(A).

U

V

A
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Question
How do reflection principles behave in absolute generality?
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First-Order Reflection
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The L-M reflection is not the right formulation of reflection in urelement
set theory: every Vα(A) thinks that there is only a set of urelements.

Instead,
(RP) For every set x there is a transitive set t extending x such that
for every v1, ...,vn ∈ t, φ(v1, ...,vn)↔ φt(v1, ...,vn).

Partial reflection: any true statement is true in some transitive set
containing the parameters.

(RP−) If φ(x1, ...,xn), then there is a transitive set t containing
x1, ...xn such that φt(x1, ...,xn).

Theorem (Lévy)
Z + RP− ⊬ RP.

Are RP and RP− provable from “urelement set theory”? Are they
equivalent?
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ZFUR

Definition
The language of urelement set theory contains A as a unary predicate for
urelements. ZU is Zermelo set theory modified to allow a proper class of
urelements plus ∀x(A (x)→∀y(y /∈ x)).

Definition
ZFUR = ZU + Replacement.
ZFCUR = ZFUR + AC.
ZF = ZFUR + ∀x¬A (x).
ZFC = ZF + AC.

Note. The subscript R indicates that we are only working with
Replacement.
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Interpreting U in V

Definition (Barwise?)
Let 〈V,∈〉 be a model of ZF and X be a class of V. In V, define by
recursion

VJXK = ({0}×X)∪{x̄ ∈ V : ∃x(x̄ = 〈1,x〉∧ x ⊆ VJXK)}.
For every x̄, ȳ ∈ VJXK,

x̄ ∈̄ ȳ iff ∃y(ȳ = 〈1,y〉∧ x̄ ∈ y);
Ā (x̄) iff x̄ ∈ {0}×X.

Theorem
Let V be a model of ZF and X be a class of V. Then

VJXK |= ZFUR;
VJXK |= AC iff V |= AC;
〈V,∈〉 ∼=

⟨
VVJXK, ∈̄⟩.

14 / 39
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Interpreting U in V

Corollary.
The following theories are mutually interpretable.

ZF
ZFCUR + A ∼ ω
...
ZFCUR + “For every cardinal κ, there are κ-many urelements”

Proof.
VJωK has ω-many urelements, and VJOrdK has unboundedly many.
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Folklore
ZFCUR ⊬ RP−.

Proof.
Start with a model U |= ZFCUR + A ∼ ω. Let UFin =

∪
A⊆A V(A), where

A ⊆ A is finite.

UFin |= ZFCUR +A is a proper class.

In UFin no transitive set can reflect “A is a proper class ∧ Pairing ∧ Union
∧(∃x x = x)”, so RP− fails.

Remark. This also shows that ZFCUR cannot prove the Collection
Principle, i.e.,

∀x ∈ w∃yφ(x,y,p)→∃v∀x ∈ w∃y ∈ v φ(x,y,p).
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Question
When will first-order reflection hold?
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Plenitude and Tail

(Plenitude) For every cardinal κ, there are κ-many urelements.

Definition
For any sets of urelements A,B ⊆ A , B is a tail of A, if B is disjoint from
A and every C ⊆ A disjoint from A injects into B.

(Tail) Every set of urelements has a tail.
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A urelement-characterization of RP

Theorem
Over ZFCUR, the following are equivalent.

RP
RP−

Collection
Plenitude ∨ Tail

This provides a characterization of first-order reflection in terms of
urelements.
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Without AC?

The use of AC in the previous theorem is essential.

Theorem
ZFUR + Plenitude ⊬ RP (in fact, Collection);
ZFUR + RP ⊬ (Plenitude ∨ Tail).

Open Questions
ZFUR + Collection ` RP−?
ZFUR + RP− ` RP?
ZFUR + RP− ` Collection?
...
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Urelement class theory

The language of urelement class theory is two-sorted: the first-order
variables w,x,y,z, ... quantify over sets and urelements, and the
second-order variables X,Y,R,F, ... quantify over classes.

(Collection) ∀x ∈ w ∃yR(x,y)→∃v∀x ∈ w∃y ∈ v R(x,y).

(RP) For every X1, ..., Xn, there is a transitive set t such that for
every x1, ...,xm ∈ t,

φ(X1, ...,Xn,x1, ...,xm)↔ φt(X1 ∩ t, ...,Xn ∩ t,x1, ...,xm),

where φ contains only first-order quantifiers.
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where φ contains only first-order quantifiers.
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Class theories with urelements

Definition
GBcUR = ZU + Class Extensionality + Replacement + First-Order
Comprehension + AC for sets.
KMcUR = GBcUR + Full Comprehension.

GBCU= GBUR + Global Well-Ordering (GWO)
KMCU = KMUR + GWO.
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Second-order AC

With proper class many urelements, different second-order versions of AC
come apart.

(Limitation of Size) All proper classes are equinumerous.
(Global Well-Ordering) There is a well-ordering of the universe U.
(Global Choice) There is a class function F such that for every
non-empty set x, F(x) ∈ x.

Theorem (Felgner)
Over KMcUR,

Global Choice ↛ Global Well-Ordering;
Global Well-Ordering ↛ Limitation of Size.
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RP in class theory

Fact
GBCU ` RP.

Theorem (Felgner)
KMcUR +Global Choice ⊬ RP (in fact, Collection).

Theorem
KMcUR +Collection+Plenitude ⊬ RP.

Open Question
KMcUR + Collection + Global Choice ` RP?
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Summary

Over ZFCUR, RP and RP− hold exactly when the urelements are
arranged in a certain way (i.e., Plenitude ∨ Tail), and they follow
from Collection.

The urelement-characterization doesn’t hold in either ZFUR or
KMcUR; first-order reflection does not follow from Collection in
KMcUR (conjecture: same in ZFUR) and behaves much more like a
choice principle.

With absolute generality, it seems that first-order reflection is no
longer part of the iterative conception of set.
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RP2 with Urelements
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Recall Bernays’ second-order reflection principle.
(RP2) ∀X[φ(X)→∃t(t is transitive∧φt(X∩ t))],

where φ can be any formula in the language of class theory.

In pure set theory, RP2 is a weak large cardinal axiom.

Question
Can urelements affect the strength of RP2?
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With few urelements

Let X ≤ Y stand for “there is an injection from X to Y”. X < Y if
X ≤ Y∧Y ≰ X.

Theorem
KMCU + RP2 + A ≤ V is equiconsistent with KM + RP2.

Thus, RP2 remains weak if there are few urelements.

Question
Is V < A consistent with RP2?
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The Uκ(A)-hierarchy

Definition
Let κ be an infinite cardinal and A ⊆ A .

Uκ(A) =
∪

B∈Pκ (A)

Vκ(B),

where Pκ(A) = {x ⊆ A : x < κ}.

Zermelo’s Quasi-Categoricity Theorem.
A full second-order model M satisfies ZFC2 iff M is isomorphic to some
Vκ , where κ is inaccessible.

Uκ(A) is a natural generalization of Vκ in the context of urelement set
theory.
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Theorem
The following are equivalent.

〈M,P(M)〉 is a transitive model of KMCU.
M = Uκ(A) for some inaccessible cardinal κ and A ⊆ A .

Moreover, Uκ(A) |= V < A if κ < A.

κ

A

Uκ(A)
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Theorem
It is consistent relative to a κ+-supercompact cardinal that both RP2 and
V < A hold.

Proof sketch.
Start with a model V of ZFC with κ and add a global well-ordering.

Let U = VJOrdK. U |= GBCU + Plenitude, where κ remains
κ+-supercompact.

We can construct an elementary embedding j : U → M with crit(j) = κ
such that

M is transitive and Mκ+ ⊆ M;
j fixes κ+-many urelemenets in some set A.

Then Uκ(A) ∈ M, and by the elementarity of j, Uκ(A) |= RP2+V <A .
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A κ+-supercompact cardinal exceeds way beyond KM + RP2.

Question
What is the strength of RP2 + V < A ?
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Definition (Hamkins, Y.)
The Abundant Atom Axiom (AAA) =df

V < A ;
for every small class B (i.e, B < A ) there is a small D ⊆ I×B such
that every subclass of B is Di for some i ∈ I (“A strong limit”);
if I is small and D ⊆ I×B is such that Di is small for each i ∈ I , then
D itself is small (“A regular”).

Proposition (Hamkins, Y.)
If κ < κ ′ are both inaccessible and |A|= κ ′, then Uκ(A) |= AAA;
if κ is λ -supercompact for some inaccessible λ > κ, then there is a
model of Uκ(A) |= RP2 + AAA.
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Theorem (Hamkins, Y.)
KMCU+ RP2 + AAA interprets KM + a supercompact cardinal.
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Proof sketch.

Let U be a model of KMCU + AAA + RP2. We can then carry out the
unrolling construction (due to Marek and Mostowski).

A membership code is an extensional and well-founded class graph with a
unique maximal code. Treat equivalence classes of isomorphic membership
codes as sets. Define E ε F as “E is isomorphic to F restricted to an
immediate descendant of its maximal node” . This unrolls a model 〈W,ε〉
of ZFC−.

OrdU will code an inaccessible cardinal κ in W. The shortest well-ordering
of A will code a cardinal λ above κ. The abundance of A implies that λ
is inaccessible.

Let V = VW
λ , which is a model of KM with an inaccessible cardinal κ.
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Proof sketch (continued).

But in fact, V |= κ is supercompact.

Definition (Hamkins, Y.)
A cardinal θ is second-order reflective, if every second-order sentence φ
true in some structure M (of any size) with θ ⊆ M in a language of size
less than θ is also true in a first-order elementary substructure m ≺ M of
size less than θ and with m∩θ ∈ θ .

Theorem (Hamkins, Y.)
θ is second-order reflective if and only if θ is supercompact.

RP2 + AAA in U implies that κ is second-order reflective in V̄.
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Corollary
RP2 + AAA ` V 6= L (and more).

Proof.
V (of U) is isomorphic to VV

κ by x 7→ 〈TC{x},∈〉. In particular, every
y ∈ VV

κ has a set code, which is isomorphic to the transitive closure of
some pure set in U.

Since κ is supercompact in V, it follows that there are proper-class many
measurable cardinals (and more) in V.
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Philosophical remarks

Quantifying over everything can indeed affect second-order reflection
given enough urelements. This can be seen as another way of
strengthening reflection principles in addition to several attempts in
the literature.

Many (including Gödel) think that Limitation of Size is a maximality
principle. But Limitation of Size is rather a restrictive axiom with
absolute generality: under RP2, LS holds iff A ≤ V. Therefore, it is
¬LS, rather than LS, that maximizes the universe.
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Thank You!
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