Reflective Mereology

Bokai Yao

CUNY Logic & Metaphysics Workshop, September 19, 2022

1 Set Theory and Mereology

1.1 Absolute generality

We may hope to quantify over *everything* in both mereology and set theory. This will provide a natural reading of certain principles in mereology and set theory. E.g.,

(Transitivity) For *every* x, y and z, if x is a part of y and y is a part of z, then x is a part of z

(Pairing) For every x and y, there is a set of them.

Question: Can mereology sit well with set theory when both quantify over everything?

1.2 Formal setting

The language of plural quantification \mathscr{L}^{∞} (monadic second-order logic). *xx*, *yy*, *zz*... stand for pluralities; *x* \propto *xx* abbreviates *x* is among *xx*.

(*Plural Comprehension*) $\exists yy \forall z(z \propto yy \leftrightarrow \varphi(z))$.

The plural language of mereology and set theory $\mathscr{L}^{\infty}_{<,\in,\mathrm{Ur}}$ contains three non-logical first-order predicates $<, \in$, and Ur for proper parthood, membership, and urelementhood.

The axioms of Classical Mereology (CM₂):

(Transitivity) < is transitive.

(Asymmetry) < is asymmetric.

(WeakSup) If x < y, then y has a proper part that does not overlap x.

(Unrestricted Fusion) Every non-empty xx have a fusion.¹

The appeal of Unrestricted Fusion: fusions are ontologically innocent. CM2 proves

(Fusion Uniqueness) Every non-empty plurality have a unique fusion.

ZFCU₂ is second-order ZFC with urelements formulated in $\mathscr{L}_{<,\in,\mathrm{Ur}}^{\infty}$.

1.3 Uzquiano's cardinality problem

CM + ZFCU already also yields unnatural consequences, e.g., by Unrestricted Fusion, there is a *u* that fuses everything but then $\{u\}$ must be a proper part of *u*...

To make it worse, consider the following axioms.

(Limitation of Size) xx form a set iff there is no surjective map from xx onto everything.

(Atomicity) Everything is a fusion of some mereological atoms.

Theorem 1.1 (Uzquiano). The theory $CM_2 + ZFCU_2 + LS + Atomicity is inconsistent.$

Proof. By a Cantorian argument, we can show that under CM_2 , there is no surjective map from all mereological atoms to everything, so the atoms form a set by LS. But by Fusion Uniqueness a set of atoms can only generate a set of fusions. It then follows from Atomicity that there is a set of everything—contradiction.

Note: full Atomicity is not needed. The argument works as long as the atomless gunks form a set.

Some possible ways out:

- Give up absolute generality.
- Introduce proper classes (Lewis).
- Reject Limitation of Size.

• ...

¹*x* is a party of *y* ($x \le y$) iff $x < y \lor x = y$. *x* overlaps *y* iff they have a common part. *x* is a fusion of *yy* iff every *y* among *yy* is a part of *x* and every part of *x* overlaps some *y* among *yy*.

• Find another mereology.

A common diagnosis: things fuse too liberally in CM. Some restriction is needed. For example, it might be nice to have

(Fusion \leftrightarrow Set) *xx* fuse iff *xx* form a set.

Question: Can there will be an alternative mereology that is consistent with $ZFCU_2 + LS + Atomicity$?

2 Reflective Mereology

2.1 Set-theoretic reflection

Definition 2.1. Given a set *s* and some set-theoretic assertion $\varphi(xx)$ with possibly some plural parameters, $\varphi(xx)^{\in s}$ is the result of restricting all the quantifiers of φ to the *members* of *s* and replacing every occurrence of *xx* with $xx \cap s$.

Reflection principles in set theory amounts to the indescribability of V: any true statement about V is already true in some transitive set. Bernays' second-order reflection:

(RP₂) $\varphi(xx) \to \exists s(s \text{ is a transitive set} \land \varphi(xx)^{\in s}).$

Why RP₂ in set theory?

- It provides a unified justification for many axioms of ZFC₂.
- It produces a fair amount of large cardinals.

2.2 **Reflective mereology**

If V is indescribable, so should be the whole reality. Our mereology should reflect this fact: whatever is true is already true within some object.

Definition 2.2. Given an object *t* and some assertion $\varphi(xx) \in \mathscr{L}^{\infty}_{<,\in,\mathrm{Ur}}$ with possibly some plural parameters, $\varphi(xx)^{<t}$ is the result of restricting all the quantifiers of φ to the **proper parts** of *t* and replacing every occurrence of *xx* with the proper parts of *t* among *xx*.

(MRP₂) $\varphi(xx) \to \exists t \varphi(xx)^{< t}$.

I shall also assume a weaker version of Unrestricted Fusion.

(M-Separation) If xx are parts of some y, then xx have a fusion.

The idea behind M-Separation: when it is safe to fuse, fuse as much as possible.

Definition 2.3. The axioms of *Reflective Mereology* (RM₂) consist of Transitivity, Asymmetry, M-Separation and all instances of MRP₂.

Lemma 2.1. Assume RM₂. Then,

(1) everything is a proper part of something;

(2) nothing contains everything as a part;

(3) every finite plurality have a fusion. \Box

Moreover, RM₂ proves that things fuse when they are not too many

Theorem 2.2 (Mereological Replacement). Assume RM_2 . If *xx* fuse and there is a surjective map from *xx* onto *yy*, then *yy* fuse.

2.3 RM $\vdash \neg$ Weak Supplementation

Lemma 2.3. Assume RM₂ + WeakSup. For every *x* and *y*,

(i) if every part of *y* overlaps *x*, then *y* is a part of *x*;

(ii) if y is a part of x and everything disjoint from y is also a part of x, then everything is a part of x. \Box

Lemma 2.4. Assume RM_2 + WeakSup. For every *x*, the objects that are disjoint from *x* have a fusion.

Proof. Fix an *a* and let *dd* be the plurality of all things disjoint from *a*. Suppose that *dd* don't have a fusion. Fix a *u* that is disjoint from *a*, which exists by WeakSup and 2.1. Then by MRP, there is a *t* with a, u < t such that

$$\forall z < t \neg Fu(z, dd)^{< t}.$$

Thus, for all z < t, $\neg Fu(z, dd)^{<t}$. But consider dd_t which are things among dd that are proper parts of t. By M-Separation, dd_t have a fusion z, so $Fu(z, dd_t)$. z is a part of t by Lemma 2.3 and indeed a proper part of t because a < t. So it follows from $Fu(z, dd_t)$ that $Fu(z, dd)^{<t}$ —contradiction.

Theorem 2.5. RM₂ + Weak Supplementation is inconsistent.

Proof. Fix some *a*. By the last lemma, dd_a have fusion *b*. By finitary fusion, some *u* fuses *a* and *b*. Then by Lemma 2.3 (ii), it follows that everything is a part of *u*, which contradicts 2.1 (ii).

Corollary 2.5.1. Assume RM₂. Then some plurality have more than one fusion.

Proof. By a standard argument as in CM but only using Finitary Fusion, one can show that Weak Supplementation is equivalent to Fusion Uniqueness. \Box

3 A Natural Model of RM₂ + ZFCU₂

Let *U* be a full second-order model of $ZFCU_2 + Limitation of Size + RP_2$ with a set of urelements of size 2^{κ} for some infinite cardinal κ . In *U*, we first define a parthood notion on the set of urelements Ur by fixing a bijection *f* from Ur to $P(\kappa) \setminus \{\emptyset\}$.

Definition 3.1. For every $x, y \in U$

(i) $x \sqsubset y$ (x is a proper Ur-*part* of y) iff x and y are unelements with $f(x) \subsetneq f(y)$;

(ii) x < y (x is a proper part of y) iff either $x \sqsubset y$, or $x \in TC(y)$, or $x \sqsubset z$ for some $z \in TC(y)$.

Let $\mathscr{U} = \langle U, P(U), \in^U, \mathrm{Ur}, \langle \rangle$ be the corresponding model for the language $\mathscr{L}_{\langle \cdot, \in \mathrm{Ur}}^{\infty}$.

Theorem 3.1. $\mathscr{U} \models$ Atomicity $\land RM_2$. Moreover, in \mathscr{U} Classical Merelogy holds the urelements, and Fusion \leftrightarrow Set holds.

Proof. Atomicity. Let x be a set. Then either \emptyset or some atomic urelement will be an atomic part of x.

M-Separation. Let *xx* be parts of some *y*. Then *xx* are included by $TC(\{y\}) \cup Ur$, which is a set. It is easy to check that the set of *xx* will be a fusion of *xx*.

 MRP_2 (Sketch). The key observation is that since < is a definable relation in Ur, for every transitive set *t* that is tall enough and contains all urelements, we shall have

$$\varphi^{\in t} \leftrightarrow \varphi^{< t}$$

So if φ holds, we can find such t by using RP₂ to reflect

$$\varphi \wedge \operatorname{ZFCU}_2 \wedge \exists y(y = \operatorname{Ur}).$$